|
|
Showing 1 - 2 of
2 matches in All Departments
A definitive proof of global nonlinear stability of Minkowski
space-time as a solution of the Einstein-Klein-Gordon equations
This book provides a definitive proof of global nonlinear stability
of Minkowski space-time as a solution of the Einstein-Klein-Gordon
equations of general relativity. Along the way, a novel robust
analytical framework is developed, which extends to more general
matter models. Alexandru Ionescu and Benoit Pausader prove global
regularity at an appropriate level of generality of the initial
data, and then prove several important asymptotic properties of the
resulting space-time, such as future geodesic completeness, peeling
estimates of the Riemann curvature tensor, conservation laws for
the ADM tensor, and Bondi energy identities and inequalities. The
book is self-contained, providing complete proofs and precise
statements, which develop a refined theory for solutions of
quasilinear Klein-Gordon and wave equations, including novel linear
and bilinear estimates. Only mild decay assumptions are made on the
scalar field and the initial metric is allowed to have nonisotropic
decay consistent with the positive mass theorem. The framework
incorporates analysis both in physical and Fourier space, and is
compatible with previous results on other physical models such as
water waves and plasma physics.
A definitive proof of global nonlinear stability of Minkowski
space-time as a solution of the Einstein-Klein-Gordon equations
This book provides a definitive proof of global nonlinear stability
of Minkowski space-time as a solution of the Einstein-Klein-Gordon
equations of general relativity. Along the way, a novel robust
analytical framework is developed, which extends to more general
matter models. Alexandru Ionescu and Benoit Pausader prove global
regularity at an appropriate level of generality of the initial
data, and then prove several important asymptotic properties of the
resulting space-time, such as future geodesic completeness, peeling
estimates of the Riemann curvature tensor, conservation laws for
the ADM tensor, and Bondi energy identities and inequalities. The
book is self-contained, providing complete proofs and precise
statements, which develop a refined theory for solutions of
quasilinear Klein-Gordon and wave equations, including novel linear
and bilinear estimates. Only mild decay assumptions are made on the
scalar field and the initial metric is allowed to have nonisotropic
decay consistent with the positive mass theorem. The framework
incorporates analysis both in physical and Fourier space, and is
compatible with previous results on other physical models such as
water waves and plasma physics.
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R367
R340
Discovery Miles 3 400
Loot
Nadine Gordimer
Paperback
(2)
R367
R340
Discovery Miles 3 400
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.