![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
"Introduction to Modern Number Theory" surveys from a unified point of view both the modern state and the trends of continuing development of various branches of number theory. Motivated by elementary problems, the central ideas of modern theories are exposed. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories. Moreover, the authors have added a part dedicated to arithmetical cohomology and noncommutative geometry, a report on point counts on varieties with many rational points, the recent polynomial time algorithm for primality testing, and some others subjects. From the reviews of the 2nd edition: " For my part, I come to praise this fine volume. This book is a highly instructive read the quality, knowledge, and expertise of the authors shines through. The present volume is almost startlingly up-to-date ..." (A. van der Poorten, Gazette, Australian Math. Soc. 34 (1), 2007)"
This book, now in its 2nd edition, is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth. The given construction of these p-adic L-functions uses precise algebraic properties of the arithmetical Shimura differential operator. The book will be very useful for postgraduate students and for non-experts looking for a quick approach to a rapidly developing domain of algebraic number theory. This new edition is substantially revised to account for the new explanations that have emerged in the past 10 years of the main formulas for special L-values in terms of arithmetical theory of nearly holomorphic modular forms.
This edition has been called startlingly up-to-date, and in this corrected second printing you can be sure that it 's even more contemporaneous. It surveys from a unified point of view both the modern state and the trends of continuing development in various branches of number theory. Illuminated by elementary problems, the central ideas of modern theories are laid bare. Some topics covered include non-Abelian generalizations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. This substantially revised and expanded new edition contains several new sections, such as Wiles' proof of Fermat's Last Theorem, and relevant techniques coming from a synthesis of various theories.
|
You may like...
Paul and the Heritage of Israel - Paul's…
David P. Moessner, Daniel Marguerat, …
Hardcover
R4,651
Discovery Miles 46 510
Informatics in Control, Automation and…
Jean-Louis Ferrier, Oleg Gusikhin, …
Hardcover
R6,455
Discovery Miles 64 550
Organic Sensors - Materials and…
Eduardo Garcia-Breijo, Berta Gomez-Lor Perez, …
Hardcover
|