Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
Presenting theory while using "Mathematica" in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray's famous textbook, covers how to define and compute standard geometric functions using "Mathematica" for constructing new curves and surfaces from existing ones. Since Gray's death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the "Mathematica" code and added a "Mathematica" notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi's formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but"Mathematica "handles it easily, either through computations or through graphing curvature. Another part of "Mathematica" that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use "Mathematica" to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples.It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.
This book expresses the full understanding of Weyl's formula for the volume of a tube, its roots and its implications. Historical notes and Mathematica drawings have been added to this revised second edition. From the reviews: "Will do much to make Weyl's tube formula more accessible to modern readers.... A high point is the presentation of estimates for the volumes of tubes in ambient Riemannian manifolds whose curvature is bounded above or below." --BULLETIN OF THE AMS
John Alfred Gray was a practising London doctor in 1888 when he was approached by Sir Salter Payne who had returned from Kabul on the orders of the Amir to procure an English surgeon. During intervals in his professional work at the Court, Gray recorded his daily experiences and events in the Afghanistan of the period. Much of his writing is compiled from the regular letters which he sent to his fiancee in England providing the work with a freshness and spontaneity showing Gray coming to know Afghanistan, the country and the people. Through the course of the book the story of Gray's life in Afghanistan unfolds, but it is no merely a commentary of a visit, rather an evaluation of a country in flux and its powerful monarch, Amir Abdurrahman. Gray's position brought him into contact with the rich and the poor, lowly dwellings and palaces, slaves and royalty. His book gives a vivid first-hand account of the Afghan nation in the late nineteenth century, as observed by an impressionable outsider.
The main subject of the book is the full understanding of Weyl's formula for the volume of a tube, its roots and its implications. Another discussed approach to the study of volumes of tubes is the computation of the power series of the volume of a tube as a function of its radius. The chapter on mean values, besides its intrinsic interest, shows an interesting fact: methods which are useful for volumes are also useful for problems related with the Laplacian. Historical notes and Mathematica drawings have been added to this revised second edition.
These materials - developed and thoroughly class tested over many years by the authors -are for use in courses at the sophomore/junior level. A prerequisite is the calculus of one variable, although calculus of several variables, and linear algebra are recommended. The text covers the standard topics in first and second order equations, power series solutions, first order systems, Laplace transforms, numerical methods and stability of non-linear systems. Liberal use is made of programs in Mathematica, both for symbolic computations and graphical displays. The programs are described in separate sections, as well as in the accompanying Mathematica notebooks. However, the book has been designed so that it can be read with or without Mathematica and no previous knowledge of Mathematica is required. The CD-ROM contains the Mathematica solution of worked examples, a selection of various Mathematica notebooks, Mathematica movies and sample labs for students. Mathematica programs and additional problem/example files will be available online through the TELOS Web site and the authors dedicated web site.
Title: At the Court of the Ameer. A narrative.Publisher: British Library, Historical Print EditionsThe British Library is the national library of the United Kingdom. It is one of the world's largest research libraries holding over 150 million items in all known languages and formats: books, journals, newspapers, sound recordings, patents, maps, stamps, prints and much more. Its collections include around 14 million books, along with substantial additional collections of manuscripts and historical items dating back as far as 300 BC.The GENERAL HISTORICAL collection includes books from the British Library digitised by Microsoft. This varied collection includes material that gives readers a 19th century view of the world. Topics include health, education, economics, agriculture, environment, technology, culture, politics, labour and industry, mining, penal policy, and social order. ++++The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to insure edition identification: ++++ British Library Gray, John Alfred; 1895. xvi. 523 p.; 8 . RL 131
The purpose of this companion volume to our text is to provide instructors (and eventu ally students) with some additional information to ease the learning process while further documenting the implementations of Mathematica and ODE. In an ideal world this volume would not be necessary, since we have systematically worked to make the text unambiguous and directly useful, by providing in the text worked examples of every technique which is discussed at the theoretical level. However, in our teaching we have found that it is helpful to have further documentation of the various solution techniques introduced in the text. The subject of differential equations is particularly well-suited to self-study, since one can always verify by hand calculation whether or not a given proposed solution is a bona fide solution of the differential equation and initial conditions. Accordingly, we have not reproduced the steps of the verification process in every case, rather content with the illustration of some basic cases of verification in the text. As we state there, students are strongly encouraged to verify that the proposed solution indeed satisfies the requisite equation and supplementary conditions."
|
You may like...
|