Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
The main purpose of this book is to present, in a unified approach, several algorithms for fixed point computation, convex feasibility and convex optimization in infinite dimensional Banach spaces, and for problems involving, eventually, infinitely many constraints. For instance, methods like the simultaneous projection algorithm for feasibility, the proximal point algorithm and the augmented Lagrangian algorithm are rigorously formulated and analyzed in this general setting and shown to be applicable to much wider classes of problems than previously known. For this purpose, a new basic concept, "total convexity", is introduced. Its properties are deeply explored, and a comprehensive theory is presented, bringing together previously unrelated ideas from Banach space geometry, finite dimensional convex optimization and functional analysis. For making a general approach possible the work aims to improve upon classical results like the Holder-Minkowsky inequality of p. This book should be of interest to both researchers in nonlinear analysis and to applied mathematicians dealing with numerical solution of integral equations, equilibrium problems, image reconstruction, and optimal control.
This is the first comprehensive book treatment of the emerging subdiscipline of set-valued mapping and enlargements of maximal monotone operators. It features several important new results and applications in the field. Throughout the text, examples help readers make the bridge from theory to application. Numerous exercises are also offered to enable readers to apply and build their own skills and knowledge.
Set-valued analysis is an essential tool for the mathematical formulation of many real-life situations, e.g., equilibrium theory in mathematical economics. This work offers the first comprehensive treatment in book form of the fairly new subdiscipline of enlargements of maximal monotone operators, including several important new results in the field. In the last decades, with the development of nonsmooth optimization, effective algorithms have been developed to solve these kinds of problems, such as nonsmooth variational inequalities. Several of these methods, such as bundle methods for variational problems, are fully developed and analyzed in this book. The first chapters provide a self-contained review of the basic notions and fundamental results in set-valued analysis, including set convergence and continuity of set-valued mappings together with many important results in infinite-dimensional convex analysis, leading to the classical fixed point results due to Ekeland, Caristi and Kakutani. Next, an in-depth introduction to monotone operators is developed, emphasizing results related to maximality of subdifferentials and of sums of monotone operators. Building on this foundational material, the second part of the monograph contains new results (all of them established during the last decade) on the concept of enlargements of monotone operators, with applications to variational inequalities, bundle-type methods, augmented Lagrangian methods, and proximal point algorithms. Audience:
|
You may like...
|