Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The Foundations of Computational Mathematics meetings are a platform for cross-fertilisation between numerical analysis, mathematics and computer science. This volume is a collection of articles based on plenary presentations, given at the 2011 meeting, by some of the world's foremost authorities in computational mathematics. The topics covered reflect the breadth of research within the area as well as the richness of interactions between seemingly unrelated branches of pure and applied mathematics. As a result this volume will be of interest to researchers in the field of computational mathematics and also to non-experts who wish to gain some insight into the state of the art in this active and significant field.
Totally positive matrices constitute a particular class of matrices, the study of which was initiated by analysts because of its many applications in diverse areas. This 2009 account of the subject is comprehensive and thorough, with careful treatment of the central properties of totally positive matrices, full proofs and a complete bibliography. The history of the subject is also described: in particular, the book ends with a tribute to the four people who have made the most notable contributions to the history of total positivity: I. J. Schoenberg, M. G. Krein, F. R. Gantmacher and S. Karlin. This monograph will appeal to those with an interest in matrix theory, to those who use or have used total positivity, and to anyone who wishes to learn about this rich and interesting subject.
This volume is a collection of articles based on the plenary talks presented at the 2008 meeting in Hong Kong of the Society for the Foundations of Computational Mathematics. The talks were given by some of the foremost world authorities in computational mathematics. The topics covered reflect the breadth of research within the area as well as the richness and fertility of interactions between seemingly unrelated branches of pure and applied mathematics. As a result this volume will be of interest to researchers in the field of computational mathematics and also to non-experts who wish to gain some insight into the state of the art in this active and significant field.
This volume is a collection of articles based on the plenary talks presented at the 2005 meeting in Santander of the Society for the Foundations of Computational Mathematics. The talks were given by some of the foremost world authorities in computational mathematics. The topics covered reflect the breadth of research within the area as well as the richness and fertility of interactions between seemingly unrelated branches of pure and applied mathematics. As a result this volume will be of interest to researchers in the field of computational mathematics and also to non-experts who wish to gain some insight into the state of the art in this active and significant field.
The aim of this book is to provide the reader with a basic understanding of Fourier series, Fourier transforms and Laplace transforms. The book is an expanded and polished version of the authors' notes for a one semester course, for students of mathematics, electrical engineering, physics and computer science. Prerequisites for readers of this book are a basic course in both calculus and linear algebra. Otherwise the material is self-contained with numerous exercises and various examples of applications.
Ridge functions are a rich class of simple multivariate functions which have found applications in a variety of areas. These include partial differential equations (where they are sometimes termed 'plane waves'), computerised tomography, projection pursuit in the analysis of large multivariate data sets, the MLP model in neural networks, Waring's problem over linear forms, and approximation theory. Ridge Functions is the first book devoted to studying them as entities in and of themselves. The author describes their central properties and provides a solid theoretical foundation for researchers working in areas such as approximation or data science. He also includes an extensive bibliography and discusses some of the unresolved questions that may set the course for future research in the field.
This volume provides a basic understanding of Fourier series, Fourier transforms, and Laplace transforms. It is an expanded and polished version of the authors' notes for a one-semester course intended for students of mathematics, electrical engineering, physics and computer science. Prerequisites for readers of this book are a basic course in both calculus and linear algebra. The material is self contained with numerous exercises and various examples of applications.
|
You may like...
|