Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
In this book, the state-of-the-art fuzzy-model-based (FMB) based control approaches are covered. A comprehensive review about the stability analysis of type-1 and type-2 FMB control systems using the Lyapunov-based approach is given, presenting a clear picture to researchers who would like to work on this field. A wide variety of continuous-time nonlinear control systems such as state-feedback, switching, time-delay and sampled-data FMB control systems, are covered. In short, this book summarizes the recent contributions of the authors on the stability analysis of the FMB control systems. It discusses advanced stability analysis techniques for various FMB control systems, and founds a concrete theoretical basis to support the investigation of FMB control systems at the research level. The analysis results of this book offer various mathematical approaches to designing stable and well-performed FMB control systems. Furthermore, the results widen the applicability of the FMB control approach and help put the fuzzy controller in practice. A wide range of advanced analytical and mathematical analysis techniques will be employed to investigate the system stability and performance of FMB-based control systems in a rigorous manner. Detailed analysis and derivation steps are given to enhance the readability, enabling the readers who are unfamiliar with the FMB control systems to follow the materials easily. Simulation examples, with figures and plots of system responses, are given to demonstrate the effectiveness of the proposed FMB control approaches.
This book is about the role and potential of using digital technology in designing teaching and learning tasks in the mathematics classroom. Digital technology has opened up different new educational spaces for the mathematics classroom in the past few decades and, as technology is constantly evolving, novel ideas and approaches are brewing to enrich these spaces with diverse didactical flavors. A key issue is always how technology can, or cannot, play epistemic and pedagogic roles in the mathematics classroom. The main purpose of this book is to explore mathematics task design when digital technology is part of the teaching and learning environment. What features of the technology used can be capitalized upon to design tasks that transform learners' experiential knowledge, gained from using the technology, into conceptual mathematical knowledge? When do digital environments actually bring an essential (educationally, speaking) new dimension to classroom activities? What are some pragmatic and semiotic values of the technology used? These are some of the concerns addressed in the book by expert scholars in this area of research in mathematics education. This volume is the first devoted entirely to issues on designing mathematical tasks in digital teaching and learning environments, outlining different current research scenarios.
This book is about the role and potential of using digital technology in designing teaching and learning tasks in the mathematics classroom. Digital technology has opened up different new educational spaces for the mathematics classroom in the past few decades and, as technology is constantly evolving, novel ideas and approaches are brewing to enrich these spaces with diverse didactical flavors. A key issue is always how technology can, or cannot, play epistemic and pedagogic roles in the mathematics classroom. The main purpose of this book is to explore mathematics task design when digital technology is part of the teaching and learning environment. What features of the technology used can be capitalized upon to design tasks that transform learners' experiential knowledge, gained from using the technology, into conceptual mathematical knowledge? When do digital environments actually bring an essential (educationally, speaking) new dimension to classroom activities? What are some pragmatic and semiotic values of the technology used? These are some of the concerns addressed in the book by expert scholars in this area of research in mathematics education. This volume is the first devoted entirely to issues on designing mathematical tasks in digital teaching and learning environments, outlining different current research scenarios.
In this book, the state-of-the-art fuzzy-model-based (FMB) based control approaches are covered. A comprehensive review about the stability analysis of type-1 and type-2 FMB control systems using the Lyapunov-based approach is given, presenting a clear picture to researchers who would like to work on this field. A wide variety of continuous-time nonlinear control systems such as state-feedback, switching, time-delay and sampled-data FMB control systems, are covered. In short, this book summarizes the recent contributions of the authors on the stability analysis of the FMB control systems. It discusses advanced stability analysis techniques for various FMB control systems, and founds a concrete theoretical basis to support the investigation of FMB control systems at the research level. The analysis results of this book offer various mathematical approaches to designing stable and well-performed FMB control systems. Furthermore, the results widen the applicability of the FMB control approach and help put the fuzzy controller in practice. A wide range of advanced analytical and mathematical analysis techniques will be employed to investigate the system stability and performance of FMB-based control systems in a rigorous manner. Detailed analysis and derivation steps are given to enhance the readability, enabling the readers who are unfamiliar with the FMB control systems to follow the materials easily. Simulation examples, with figures and plots of system responses, are given to demonstrate the effectiveness of the proposed FMB control approaches.
|
You may like...
The Yorkists - The History of a Dynasty
Anne Crawford
Hardcover
|