|
|
Showing 1 - 1 of
1 matches in All Departments
There has been a tremendous progress in the mathematical treatment
of nonlinear dynamical systems over the past two decades. This book
tries to make this progress in the field of stability theory
available to scientists and engineers. A unified and systematic
treatment of the different types of loss of stability of
equilibrium positions of statical and dynamical systems and of
periodic solutions of dynamical systems is given by means of the
methods of bifurcation and singuality theory. The reader needs only
a background in mathematics as it is usually taught to
undergraduates in engineering and, having read this book, he should
be able to treat nonlinear stability and bifurcation problems
himself in a straightforward way. Among others, concepts such as
center manifold theory, the method of Ljapunov-Schmidt, normal form
theory, unfolding theory, bifurcation diagrams, classifications and
bifurcations in symmetric systems are discussed, as far as they are
relevant in applications. Most important for the whole
representation is a set of examples taken from mechanics and
engineering showing the usefulness of the above mentioned concepts.
These examples include buckling problems of rods, plates and shells
and furthermore the loss of stability of the motion of road and
rail vehicles, of a simple robot, and of fluid conveying elastic
tubes. With these examples, questions like symmetry breaking,
pattern formation, imperfection sensitivity, transition to chaos
and correct modelling of systems are touched. Finally a number of
selected FORTRAN-routines should encourage the reader to treat his
own problem.
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R367
R340
Discovery Miles 3 400
Belfast
Kenneth Branagh
Blu-ray disc
(1)
R335
Discovery Miles 3 350
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.