0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Paperback): Elias Krainski, Virgilio... Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Paperback)
Elias Krainski, Virgilio Gomez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela Castro-Camilo, …
R1,414 Discovery Miles 14 140 Ships in 12 - 17 working days

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matern covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Hardcover): Elias Krainski, Virgilio... Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Hardcover)
Elias Krainski, Virgilio Gomez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela Castro-Camilo, …
R3,210 Discovery Miles 32 100 Ships in 9 - 15 working days

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matern covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Russell Hobbs Toaster (2 Slice…
R707 Discovery Miles 7 070
Genuine Leather Wallet With Clip Closure…
R299 R246 Discovery Miles 2 460
Tommee Tippee Cherry Latex Night…
R99 Discovery Miles 990
Dunlop Pro Padel Balls (Green)(Pack of…
R199 R165 Discovery Miles 1 650
Microsoft Xbox Series X Console (1TB)
 (21)
R14,999 Discovery Miles 149 990
Broken To Heal - Deceit, Destruction…
Alistair Izobell Paperback R200 Discovery Miles 2 000
The Super Cadres - ANC Misrule In The…
Pieter du Toit Paperback R330 R220 Discovery Miles 2 200
Hubert De Montandon Sometimes In The…
R745 R395 Discovery Miles 3 950
Malesation Dildo Barry Dildo (Black)
R679 R399 Discovery Miles 3 990
The Girl On the Train
Emily Blunt, Rebecca Ferguson, … Blu-ray disc  (1)
R61 Discovery Miles 610

 

Partners