0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Paperback): Elias Krainski, Virgilio... Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Paperback)
Elias Krainski, Virgilio Gomez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela Castro-Camilo, …
R1,414 Discovery Miles 14 140 Ships in 12 - 17 working days

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matern covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Hardcover): Elias Krainski, Virgilio... Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (Hardcover)
Elias Krainski, Virgilio Gomez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela Castro-Camilo, …
R3,210 Discovery Miles 32 100 Ships in 9 - 15 working days

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matern covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Sellotape Clear Tape - Double Value…
R22 R16 Discovery Miles 160
Womens 2-Piece Fitness Gym Gloves…
R129 Discovery Miles 1 290
Polaroid Fit Active Watch (Pink)
R760 Discovery Miles 7 600
Coach Coach Eau De Toilette Spray (90ml…
R2,277 R1,099 Discovery Miles 10 990
Expensive Poverty - Why Aid Fails And…
Greg Mills Paperback R360 R309 Discovery Miles 3 090
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180
Home Classix Placemats - Geometric…
R59 R51 Discovery Miles 510
Multi-Functional Bamboo Standing Laptop…
R1,399 R669 Discovery Miles 6 690
Wagworld Pet Blankie (Blue) - X Large…
R309 R246 Discovery Miles 2 460
Angelcare Nappy Bin Refills
R165 R145 Discovery Miles 1 450

 

Partners