0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Multiple Instance Learning - Foundations and Algorithms (Hardcover, 1st ed. 2016): Francisco Herrera, Sebastian Ventura, Rafael... Multiple Instance Learning - Foundations and Algorithms (Hardcover, 1st ed. 2016)
Francisco Herrera, Sebastian Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, …
R2,806 Discovery Miles 28 060 Ships in 10 - 15 working days

This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included. This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined. Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously. This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools.

Multiple Instance Learning - Foundations and Algorithms (Paperback, Softcover reprint of the original 1st ed. 2016): Francisco... Multiple Instance Learning - Foundations and Algorithms (Paperback, Softcover reprint of the original 1st ed. 2016)
Francisco Herrera, Sebastian Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, …
R2,789 Discovery Miles 27 890 Ships in 10 - 15 working days

This book provides a general overview of multiple instance learning (MIL), defining the framework and covering the central paradigms. The authors discuss the most important algorithms for MIL such as classification, regression and clustering. With a focus on classification, a taxonomy is set and the most relevant proposals are specified. Efficient algorithms are developed to discover relevant information when working with uncertainty. Key representative applications are included. This book carries out a study of the key related fields of distance metrics and alternative hypothesis. Chapters examine new and developing aspects of MIL such as data reduction for multi-instance problems and imbalanced MIL data. Class imbalance for multi-instance problems is defined at the bag level, a type of representation that utilizes ambiguity due to the fact that bag labels are available, but the labels of the individual instances are not defined. Additionally, multiple instance multiple label learning is explored. This learning framework introduces flexibility and ambiguity in the object representation providing a natural formulation for representing complicated objects. Thus, an object is represented by a bag of instances and is allowed to have associated multiple class labels simultaneously. This book is suitable for developers and engineers working to apply MIL techniques to solve a variety of real-world problems. It is also useful for researchers or students seeking a thorough overview of MIL literature, methods, and tools.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Fan Mini 19cm with Tilt Head Asstd (2…
R280 Discovery Miles 2 800
The Handmaid's Tale - Season 4
Elisabeth Moss, Yvonne Strahovski, … DVD R416 Discovery Miles 4 160
And So I Roar
Abi Dare Paperback R415 R289 Discovery Miles 2 890
Efekto Karbadust Insecticide Dusting…
R54 Discovery Miles 540
Be Safe Paramedical Disposable Triangle…
R4 Discovery Miles 40
Nou In Infrarooi - Gedigte
Tom Dreyer Paperback R250 R75 Discovery Miles 750
Sudocrem Skin & Baby Care Barrier Cream…
R70 Discovery Miles 700
CritiCareŽ Gauze Swabs (100 x 100 x…
R69 Discovery Miles 690
Multi Colour Jungle Stripe Neckerchief
R119 Discovery Miles 1 190
Tommee Tippee Sports Bottle 300ml - Free…
R100 R94 Discovery Miles 940

 

Partners