Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
This book addresses in detail multifaceted approaches to boosting nutrient use efficiency (NUE) that are modified by plant interactions with environmental variables and combine physiological, microbial, biotechnological and agronomic aspects. Conveying an in-depth understanding of the topic will spark the development of new cultivars and strains to induce NUE, coupled with best management practices that will immensely benefit agricultural systems, safeguarding their soil, water, and air quality. Written by recognized experts in the field, the book is intended to provide students, scientists and policymakers with essential insights into holistic approaches to NUE, as well as an overview of some successful case studies. In the present understanding of agriculture, NUE represents a question of process optimization in response to the increasing fragility of our natural resources base and threats to food grain security across the globe. Further improving nutrient use efficiency is a prerequisite to reducing production costs, expanding crop acreage into non-competitive marginal lands with low nutrient resources, and preventing environmental contamination. The nutrients most commonly limiting plant growth are N, P, K, S and micronutrients like Fe, Zn, B and Mo. NUE depends on the ability to efficiently take up the nutrient from the soil, but also on transport, storage, mobilization, usage within the plant and the environment. A number of approaches can help us to understand NUE as a whole. One involves adopting best crop management practices that take into account root-induced rhizosphere processes, which play a pivotal role in controlling nutrient dynamics in the soil-plant-atmosphere continuum. New technologies, from basic tools like leaf color charts to sophisticated sensor-based systems and laser land leveling, can reduce the dependency on laboratory assistance and manual labor. Another approach concerns the development of crop plants through genetic manipulations that allow them to take up and assimilate nutrients more efficiently, as well as identifying processes of plant responses to nutrient deficiency stress and exploring natural genetic variation. Though only recently introduced, the ability of microbial inoculants to induce NUE is gaining in importance, as the loss, immobilization, release and availability of nutrients are mediated by soil microbial processes.
This compilation has been designed to provide a comprehensive source of theoretical and practical update for scientists working in the broad field of soil science. The book explores all possible mechanisms and means to improve nutrient use efficiencies involving developing and testing of nanofertilizers, developing consortia based microbial formulations for mobilization of soil nutrients, and engineering of nutrient efficient crops using molecular biology and biotechnological tools. This is an all-inclusive collection of information about soil science. This book is of interest to teachers, researchers, soil scientists, capacity builders and policymakers. Also the book serves as additional reading material for undergraduate and graduate students of soil science, quantitative ecology, earth sciences, GIS and geodetic sciences, as well as geologists, geomorphologists, hydrologists and landscape ecology. National and international agriculture and soil scientists, policy makers will also find this to be a useful read.
Innovation in Small-Farm Agriculture: Improving Livelihoods and Sustainability is an invaluable resource focussing on the current state of knowledge and scientific advances about the complex and intertwined issues of innovation and how they relate to livelihood of small-scale farmers. This book exposes readers with a holistic overview on how agriculture is most associated with the development and transfer of technologies to farmers and their participation in research and development initiatives to improve the relevancy and usefulness of its outputs and innovation which is not well documented. The book offers comprehensive coverage of the most essential topics, including: Recent scientific advances on agricultural innovations for small farmers. Emphasizes on opportunities and constraints of techno-institutional paradigms. Highlight low-cost and eco-friendly interventions. Case studies on various innovations in agriculture spanning the different agricultural gamut.
This book provides state of the art description of various approaches, techniques and some basic fundamentals of bioremediation to manage a variety of organic and inorganic wastes and pollutants present in our environment. A comprehensive overview of recent advances and new development in the field of bioremediation research are provided within relevant theoretical framework to improve our understanding for the cleaning up of polluted water and contaminated land. The book is easy to read and language can be readily comprehended by aspiring newcomer, students, researchers and anyone else interested in this field. Renowned scientists around the world working on the above topics have contributed chapters. In this edited book, we have addressed the scope of the inexpensive and energy neutral bioremediation technologies. The scope of the book extends to environmental/agricultural scientists, students, consultants, site owners, industrial stakeholders, regulators and policy makers.
This book focuses on the pros and cons of amendment materials to restore the functioning of soil resources. It presents a holistic overview on affected land revitalization, clean up and revegetation using these amendments that could be implemented in the long term management of the soil-plant-atmosphereanimal continuum.
This compilation has been designed to provide a comprehensive source of theoretical and practical update for scientists working in the broad field of soil science. The book explores all possible mechanisms and means to improve nutrient use efficiencies involving developing and testing of nanofertilizers, developing consortia based microbial formulations for mobilization of soil nutrients, and engineering of nutrient efficient crops using molecular biology and biotechnological tools. This is an all-inclusive collection of information about soil science. This book is of interest to teachers, researchers, soil scientists, capacity builders and policymakers. Also the book serves as additional reading material for undergraduate and graduate students of soil science, quantitative ecology, earth sciences, GIS and geodetic sciences, as well as geologists, geomorphologists, hydrologists and landscape ecology. National and international agriculture and soil scientists, policy makers will also find this to be a useful read.
Waste Management for Sustainable and Restored Agricultural Soil provides a holistic approach to various mechanisms of waste management for plant nutrients, highlighting the importance of improving plant growth, nutrient concentration, and system sustainability for enhancing crop production and achieving desired environmental goals. Covering a broad overview of different kinds of wastes and waste recycling methods and sustainable management for soil health, this book focuses on both basic and applied aspects of waste management for sustainable agriculture and how nutrients are made available through waste. Academics, professionals, researchers and policymakers working in the fields of safe waste management for potential use in agricultural crop production will benefit from this book.
Bio-inoculants in Horticultural Crops, Volume Three in the Advances in Bio-inoculant Sciences series, focuses on real-time application of novel microbes that have been proven to enhance and improve plant health and productivity. The book provides comprehensive information on a range of biological approaches and mechanisms for the improvement of horticultural crops being practiced in different production systems. Covering the subject from historical developments to recent advances in microbial interventions, it addresses the potential role and bio-mechanism of bio-inoculants for challenges including stress tolerance, production, commercialization, application methodology, challenges and future roadmap for sustainable production system of horticultural crops. This volume will be useful to scientists, academicians, and students of horticulture, agriculture microbiology, plant protection, and other related subjects.
Biopesticide: Volume Two, the latest release in the Advances in Bioinoculant series, provides an updated overview on the active substances utilized in current bioinsecticides, along with information on which of them can be used for integrated pest management programs in agro-ecosystems. The book presents a comprehensive look at the development of novel solutions against new targets, also introducing new technologies that enhance the efficacy of already available active substances. Finally, readers will find insights into the advanced molecular studies on insect microbial community diversity that are opening new frontiers in the development of innovative pest management strategies. This book will be valuable to those prioritizing agro biodiversity management to address optimal productizing and enhanced food security.
Agricultural Soil Sustainability and Carbon Management presents long-term research in the field of sustainable soil use and management to guide in the prioritizing the multifunctional value of soil health and addressing interdisciplinary links between major issues such as biodiversity and climate change. As soil is the largest terrestrial carbon pool, as well as a significant contributor of greenhouse gases, much progress can be made toward curtailing the climate crisis by sustainable soil management practices.The book provides valuable insight into the soil and carbon management, the research gaps and the methodological challenges for research into soil carbon management will be include over the decades.
Advances in Organic Farming: Agronomic Soil Management Practices focuses on the integrated interactions between soil-plant-microbe-environment elements in a functioning ecosystem. It explains sustainable nutrient management under organic farming and agriculture, with chapters focusing on the role of nutrient management in sustaining global ecosystems, the remediation of polluted soils, conservation practices, degradation of pollutants, biofertilizers and biopesticides, critical biogeochemical cycles, potential responses for current and impending environmental change, and other critical factors. Organic farming is both challenging and exciting, as its practice of "feeding the soil, not the plant" provides opportunity to better understand why some growing methods are preferred over others. In the simplest terms, organic growing is based on maintaining a living soil with a diverse population of micro and macro soil organisms. Organic matter (OM) is maintained in the soil through the addition of compost, animal manure, green manures and the avoidance of excess mechanization.
Biofertilizers, Volume One: Advances in Bio-inoculants provides state-of-the-art descriptions of various approaches, techniques and basic fundamentals of BI used in crop fertilization practices. The book presents research within a relevant theoretical framework to improve our understanding of core issues as applied to natural resource management. Authored by renowned scientists actively working on bio-inoculant, biofertilizer and bio-stimulant sciences, the book addresses the scope of inexpensive and energy neutral bio-inoculant technologies and the impact regulation has on biofertilizer utilization. This book is a valuable reference for agricultural/environmental scientists in academic and corporate environments, graduate and post-graduate students, regulators and policymakers.
This book is a compilation of latest work in the field of urban soil management. It explores the global status of urban soils and puts forwards methods for sustainable utilization of urban soils and green spaces.Urban soil study is a new frontier of soil science. Urban soils research is challenging due to complexity of classification, spatial-temporal variability, exposure to pollution and the predominant effect of the anthropogenic factor on soil formation. Management of urban soils and green spaces is an important aspect for developing sustainable spaces. This is a comprehensive collection of information for the students, researchers, landscape architects understanding and maximizing the benefits of soils in urban ecosystems.
|
You may like...
|