Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book constitutes the refereed joint proceedings of the 11th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2021, held in conjunction with the 24th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2021, in Strasbourg, France, in October 2021. The workshop was held virtually due to the COVID-19 pandemic.The 10 full papers presented at ML-CDS 2021 were carefully reviewed and selected from numerous submissions. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning.
This book constitutes the refereed joint proceedings of the 10th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2020, and the 9th International Workshop on Clinical Image-Based Procedures, CLIP 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The workshops were held virtually due to the COVID-19 pandemic. The 4 full papers presented at ML-CDS 2020 and the 9 full papers presented at CLIP 2020 were carefully reviewed and selected from numerous submissions to ML-CDS and 10 submissions to CLIP. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning. The CLIP workshops provides a forum for work centered on specific clinical applications, including techniques and procedures based on comprehensive clinical image and other data.
This book constitutes the refereed proceedings of the International Workshop on Prostate Cancer Imaging, held in conjunction with MICCAI 2011, in Toronto, Canada, in September 2011. The 15 revised full papers presented together with 2 invited talks were carefully reviewed and selected from 19 submissions. The papers cover the clinical areas of radiology, radiation oncology, and image guided intervention, addressing topics such as prostate segmentation, multi-modal prostate registration, and computer-aided diagnosis and classification of prostate cancer.
This book constitutes the refereed joint proceedings of the Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2019, and the 9th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 7 full papers presented at iMIMIC 2019 and the 3 full papers presented at ML-CDS 2019 were carefully reviewed and selected from 10 submissions to iMIMIC and numerous submissions to ML-CDS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. The ML-CDS papers discuss machine learning on multimodal data sets for clinical decision support and treatment planning.
This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.
Magnetic Resonance (MR) Imaging (MRI), a non-invasive method for imaging the human body, has revolutionized medical imaging. MR image processing, particularly segmentation, and analysis are used extensively in medical and clinical research for advancing our understanding and diagnosis of various human diseases. These efforts face two major difficulties - the first due to image intensity inhomogeneity present as a background variation component, and the second due to the non-standardness of the MR image intensities. Scale is a fundamental concept useful in almost all image processing and analysis tasks. Broadly speaking, scale related work can be divided into multi-scale representations (global models) and local scale models. In this thesis, we present a new morphometric scale model that we refer to as generalized scale which combines the properties of local scale models with the global spirit of multi-scale representations. We contend that this semi-locally adaptive nature of generalized scale confers it certain distinct advantages over other scale formulations, making it readily applicable to solving several image processing tasks.
|
You may like...
|