Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This Festschrift volume has been published in honor of Cristian Calude on the occasion of his 60th birthday and contains contributions from invited speakers and regular papers presented at the International Workshop on Theoretical Computer Science, WTCS 2012, held in Auckland, New Zealand, in February 2012. Cristian Calude has made a significant contribution to research in computer science theory. Along with early work by Chaitin, Kucera, Kurtz, Solovay, and Terwijn his papers published in the mid-1990s jointly with Khoussainov, Hertling, and Wang laid the foundation for the development of modern theory of algorithmic randomness. His work was essential for establishing the leading role of New Zealand in this area. The research interests of Cristian Calude are reflected in the topics covered by the 32 papers included in this book, namely: algorithmic information theory, algorithms, automata and formal languages, computing and natural sciences, computability and applications, logic and applications, philosophy of computation, physics and computation, and unconventional models of computation. They have been organized into four parts. The first part consists of papers discussing his life achievements. This is followed by papers in the three general areas of complexity, computability, and randomness; physics, philosophy (and logic), and computation; and algorithms, automata, and formal models (including unconventional computing).
The interplay between computability and randomness has been an
active area of research in recent years, reflected by ample funding
in the USA, numerous workshops, and publications on the subject.
The complexity and the randomness aspect of a set of natural
numbers are closely related. Traditionally, computability theory is
concerned with the complexity aspect. However, computability
theoretic tools can also be used to introduce mathematical
counterparts for the intuitive notion of randomness of a set.
Recent research shows that, conversely, concepts and methods
originating from randomness enrich computability theory.
The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.
|
You may like...
|