Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book introduces practising engineers and post-graduate students to modern approaches to seismic design, with a particular focus on reinforced concrete structures, earthquake resistant design of new buildings and assessment, repair and strengthening of existing buildings. Fundamentals of engineering seismlogy are covered in the first part, including structural dynamics, calculation of structural response, energy considerations, structural configuration, static and dynamic analysis of structures under seismic actions, represented by equivalent lateral loads, or by elastic and inelastic spectra including the Eurocode 8 spectrum. The second part explains the earthquake-related properties of reinforced concrete materials, and seismic behaviour of structural members. Eurocode 8 design provisions for each type of member are presented in detail, as well as a fully worked design application. It concludes with a discussion of methods for assessing seismic performance of structures, and several case studies involving concrete buildings with frames and structural walls with and without masonry infill panels. Seismic pathology of concrete structures, assessment of seismic capacity of exist
This book introduces practising engineers and post-graduate students to modern approaches to seismic design, with a particular focus on reinforced concrete structures, earthquake resistant design of new buildings and assessment, repair and strengthening of existing buildings.
Until now, information on the dynamic loading of structures has been widely scattered. No other book has examined the different types of loading in a comprehensive and systematic manner, and looked at their signficance in the design process. The book begins with a survey of the probabilistic background to all forms of loads, which is particularly important to dynamic loads, and then looks at the main types in turn: wind, earthquake, wave, blast and impact loading. The relevant code provisions (Eurocode and UBC American) are detailed and a number of examples are used to illustrate the principles. A final section covers the analysis for dynamic loading, drawing out the concepts underlying the treatment of all dynamic loads, and the corresponding modelling techniques. Throughout there is a focus on the modelling of structures, rather than on classical structural dynamics.
|
You may like...
|