Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven-course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious "extras" in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrees - the central par t of the book where the Standard Model is described and explained. After Trou Normand, the restive pause including human stories about physicists and no formulas, the author serves the Dessert, devoted to supersymmetry (a very beautiful theory that is still awaiting a direct experimental confirmation), to general relativity and to the mystery of quantum gravity.
Back in 1982, Edward Witten noticed that classical problems of differential geometry and differential topology such as the de Rham complex and Morse theory can be described in a very simple and transparent way using the language of supersymmetric quantum mechanics. Since then, many research papers have been written on this subject. Unfortunately not all the results in this field known to mathematicians have obtained a transparent physical interpretation, even if this new physical technique has also allowed many mathematical results to be derived which are completely new, in particular, hyper-Kaehler and the so-called HKT geometry. But in almost 40 years, no comprehensive monograph has appeared on this subject. So this book written by an expert in supersymmetric quantum field theories, supersymmetric quantum mechanics and its geometrical applications, addresses this yearning gap.It comprises three parts: The first, GEOMETRY, gives basic information on the geometry of real, complex, hyper-Kaehler and HKT manifolds, and is principally addressed to the physicist. The second part 'PHYSICS' presents information on classical mechanics with ordinary and Grassmann dynamics variables. Besides, the author introduces supersymmetry and dwells in particular on the representation of supersymmetry algebra in superspace. And the last and most important part of the book 'SYNTHESIS', is where the ideas borrowed from physics are used to study purely mathematical phenomena.
Quantum chromodynamics is the fundamental theory of strong interactions. It is a physical theory describing Nature. Lectures on Quantum Chromodynamics concentrates, however, not on the phenomenological aspect of QCD; books with comprehensive coverage of phenomenological issues have been written. What the reader will find in this book is a profound discussion on the theoretical foundations of QCD with emphasis on the nonperturbative formulation of the theory: What is gauge symmetry on the classical and on the quantum level? What is the path integral in field theory? How to define the path integral on the lattice, keeping intact as many symmetries of the continuum theory as possible? What is the QCD vacuum state? What is the effective low energy dynamics of QCD? How do the ITEP sum rules work? What happens if we heat and/or squeeze hadronic matter? Perturbative issues are also discussed: How to calculate Feynman graphs? What is the BRST symmetry? What is the meaning of the renormalization procedure? How to resum infrared and collinear singularities? And so on.The book is an outgrowth of the course of lectures given by the author for graduate students at ITEP in Moscow. Much extra material has been added.
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven-course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious "extras" in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrees - the central par t of the book where the Standard Model is described and explained. After Trou Normand, the restive pause including human stories about physicists and no formulas, the author serves the Dessert, devoted to supersymmetry (a very beautiful theory that is still awaiting a direct experimental confirmation), to general relativity and to the mystery of quantum gravity.
|
You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
(7)
|