0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Geometric Control Theory and Sub-Riemannian Geometry (Hardcover, 2014 ed.): Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier,... Geometric Control Theory and Sub-Riemannian Geometry (Hardcover, 2014 ed.)
Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier, Andrey Sarychev, Mario Sigalotti
R3,490 Discovery Miles 34 900 Ships in 12 - 17 working days

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Mathematical Control Theory and Finance (Hardcover, 2008 ed.): Andrey Sarychev, Albert Shiryaev, Manuel Guerra, Maria do... Mathematical Control Theory and Finance (Hardcover, 2008 ed.)
Andrey Sarychev, Albert Shiryaev, Manuel Guerra, Maria do Rosario Grossinho
R3,039 Discovery Miles 30 390 Ships in 10 - 15 working days

Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from "pure" branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to "real life" problems, as is the case in robotics, control of industrial processes or ?nance. The "high tech" character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.

Geometric Control Theory and Sub-Riemannian Geometry (Paperback, Softcover reprint of the original 1st ed. 2014): Gianna... Geometric Control Theory and Sub-Riemannian Geometry (Paperback, Softcover reprint of the original 1st ed. 2014)
Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier, Andrey Sarychev, Mario Sigalotti
R3,885 Discovery Miles 38 850 Ships in 10 - 15 working days

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Mathematical Control Theory and Finance (Paperback, Softcover reprint of hardcover 1st ed. 2008): Andrey Sarychev, Albert... Mathematical Control Theory and Finance (Paperback, Softcover reprint of hardcover 1st ed. 2008)
Andrey Sarychev, Albert Shiryaev, Manuel Guerra, Maria do Rosario Grossinho
R2,830 Discovery Miles 28 300 Ships in 10 - 15 working days

Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from "pure" branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to "real life" problems, as is the case in robotics, control of industrial processes or ?nance. The "high tech" character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Christmas Nativity Wood Finish Set Of 11
R1,599 R1,119 Discovery Miles 11 190
Canon 445 Original Ink Cartridge (Black)
R700 R335 Discovery Miles 3 350
The Wonder Of You
Elvis Presley, Royal Philharmonic Orchestra CD R58 R48 Discovery Miles 480
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Generic Pantum PC210 Compatible Toner…
R610 R200 Discovery Miles 2 000
STEM Activity: Sensational Science
Steph Clarkson Paperback  (4)
R246 R202 Discovery Miles 2 020
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Cable Guys Controller and Smartphone…
R399 R349 Discovery Miles 3 490
Seagull Clear Storage Box (29lt)
R241 Discovery Miles 2 410
The Folk Of The Air: Trilogy - The Cruel…
Holly Black Paperback  (3)
R648 Discovery Miles 6 480

 

Partners