Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
This book is concerned with recent advances in fitness landscapes. The concept of fitness landscapes originates from theoretical biology and refers to a framework for analysing and visualizing the relationships between genotypes, phenotypes and fitness. These relationships lay at the centre of attempts to mathematically describe evolutionary processes and evolutionary dynamics. The book addresses recent advances in the understanding of fitness landscapes in evolutionary biology and evolutionary computation. In the volume, experts in the field of fitness landscapes present these findings in an integrated way to make it accessible to a number of audiences: senior undergraduate and graduate students in computer science, theoretical biology, physics, applied mathematics and engineering, but also researcher looking for a reference or/and entry point into using fitness landscapes for analysing algorithms. Also practitioners wanting to employ fitness landscape techniques for evaluating bio- and nature-inspired computing algorithms can find valuable material in the book. For teaching proposes, the book could also be used as a reference handbook.
Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc. Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts.
This book is concerned with recent advances in fitness landscapes. The concept of fitness landscapes originates from theoretical biology and refers to a framework for analysing and visualizing the relationships between genotypes, phenotypes and fitness. These relationships lay at the centre of attempts to mathematically describe evolutionary processes and evolutionary dynamics. The book addresses recent advances in the understanding of fitness landscapes in evolutionary biology and evolutionary computation. In the volume, experts in the field of fitness landscapes present these findings in an integrated way to make it accessible to a number of audiences: senior undergraduate and graduate students in computer science, theoretical biology, physics, applied mathematics and engineering, but also researcher looking for a reference or/and entry point into using fitness landscapes for analysing algorithms. Also practitioners wanting to employ fitness landscape techniques for evaluating bio- and nature-inspired computing algorithms can find valuable material in the book. For teaching proposes, the book could also be used as a reference handbook.
Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc. Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts.
This book consists of a collection of the high-quality research articles in the field of computer vision and robotics which are presented in the International Conference on Computer Vision and Robotics (CVR 2021), organized by BBD University Lucknow, India, during 7-8 August 2021. The book discusses applications of computer vision and robotics in the fields like medical science, defence, and smart city planning. The book presents recent works from researchers, academicians, industry, and policy makers.
This book constitutes the proceedings of the 13th International Conference on Swarm Intelligence, ANTS 2022, held in Malaga, Spain, in November 2022. The 19 full papers presented, together with 14 short papers and 4 extended abstracts were carefully reviewed and selected from 45 submissions. ANTS 2022 contributions are dealing with any aspect of swarm intelligence such as behavioral models of social insects, empirical and theoretical research in swarm intelligence, application of swarm intelligence methods, and much more.
This book and its companion volumes, LNCS volumes 9140, 9141 and 9142, constitute the proceedings of the 6th International Conference on Swarm Intelligence, ICSI 2015 held in conjunction with the Second BRICS Congress on Computational Intelligence, CCI 2015, held in Beijing, China in June 2015. The 161 revised full papers presented were carefully reviewed and selected from 294 submissions. The papers are organized in 28 cohesive sections covering all major topics of swarm intelligence and computational intelligence research and development, such as novel swarm-based optimization algorithms and applications; particle swarm opt8imization; ant colony optimization; artificial bee colony algorithms; evolutionary and genetic algorithms; differential evolution; brain storm optimization algorithm; biogeography based optimization; cuckoo search; hybrid methods; multi-objective optimization; multi-agent systems and swarm robotics; Neural networks and fuzzy methods; data mining approaches; information security; automation control; combinatorial optimization algorithms; scheduling and path planning; machine learning; blind sources separation; swarm interaction behavior; parameters and system optimization; neural networks; evolutionary and genetic algorithms; fuzzy systems; forecasting algorithms; classification; tracking analysis; simulation; image and texture analysis; dimension reduction; system optimization; segmentation and detection system; machine translation; virtual management and disaster analysis.
This book and its companion volumes, LNCS volumes 9140, 9141 and 9142, constitute the proceedings of the 6th International Conference on Swarm Intelligence, ICSI 2015 held in conjunction with the Second BRICS Congress on Computational Intelligence, CCI 2015, held in Beijing, China in June 2015. The 161 revised full papers presented were carefully reviewed and selected from 294 submissions. The papers are organized in 28 cohesive sections covering all major topics of swarm intelligence and computational intelligence research and development, such as novel swarm-based optimization algorithms and applications; particle swarm opt8imization; ant colony optimization; artificial bee colony algorithms; evolutionary and genetic algorithms; differential evolution; brain storm optimization algorithm; biogeography based optimization; cuckoo search; hybrid methods; multi-objective optimization; multi-agent systems and swarm robotics; Neural networks and fuzzy methods; data mining approaches; information security; automation control; combinatorial optimization algorithms; scheduling and path planning; machine learning; blind sources separation; swarm interaction behavior; parameters and system optimization; neural networks; evolutionary and genetic algorithms; fuzzy systems; forecasting algorithms; classification; tracking analysis; simulation; image and texture analysis; dimension reduction; system optimization; segmentation and detection system; machine translation; virtual management and disaster analysis.
This book is a collection of the high-quality research articles in the field of computer vision and robotics which are presented in International Conference on Computer Vision and Robotics (ICCVR 2022), organized by BBD University Lucknow India, during 21 – 22 May 2022. The book discusses applications of computer vision and robotics in the fields like medical science, defence and smart city planning. This book presents recent works from researchers, academicians, industry, and policy makers.
This book and its companion volumes, LNCS volumes 9140, 9141 and 9142, constitute the proceedings of the 6th International Conference on Swarm Intelligence, ICSI 2015 held in conjunction with the Second BRICS Congress on Computational Intelligence, CCI 2015, held in Beijing, China in June 2015. The 161 revised full papers presented were carefully reviewed and selected from 294 submissions. The papers are organized in 28 cohesive sections covering all major topics of swarm intelligence and computational intelligence research and development, such as novel swarm-based optimization algorithms and applications; particle swarm opt8imization; ant colony optimization; artificial bee colony algorithms; evolutionary and genetic algorithms; differential evolution; brain storm optimization algorithm; biogeography based optimization; cuckoo search; hybrid methods; multi-objective optimization; multi-agent systems and swarm robotics; Neural networks and fuzzy methods; data mining approaches; information security; automation control; combinatorial optimization algorithms; scheduling and path planning; machine learning; blind sources separation; swarm interaction behavior; parameters and system optimization; neural networks; evolutionary and genetic algorithms; fuzzy systems; forecasting algorithms; classification; tracking analysis; simulation; image and texture analysis; dimension reduction; system optimization; segmentation and detection system; machine translation; virtual management and disaster analysis.
|
You may like...
|