Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This volume presents a review of advanced technological problems in the glass industry and of the mathematics involved. It is amazing that such a seemingly small research area is extremely rich and calls for an impressively large variety of mathematical methods, including numerical simulations of considerable complexity. The problems treated here are very typical of the field of glass manufacturing and cover a large spectrum of complementary subjects: injection molding by various techniques, radiative heat transfer in glass, nonisothermal flows and fibre spinning. The book can certainly be useful not only to applied mathematicians, but also to physicists and engineers, who can find in it an overview of the most advanced models and methods.
These are the proceedings of the conference "Multiscale Problems in Science and Technology" held in Dubrovnik, Croatia, 3-9 September 2000. The objective of the conference was to bring together mathematicians working on multiscale techniques (homogenisation, singular pertubation) and specialists from the applied sciences who need these techniques and to discuss new challenges in this quickly developing field. The idea was that mathematicians could contribute to solving problems in the emerging applied disciplines usually overlooked by them and that specialists from applied sciences could pose new challenges for the multiscale problems. Topics of the conference were nonlinear partial differential equations and applied analysis, with direct applications to the modeling in material sciences, petroleum engineering and hydrodynamics.
This book presents a series of challenging mathematical problems which arise in the modeling of Non-Newtonian fluid dynamics. It focuses in particular on the mathematical and physical modeling of a variety of contemporary problems, and provides some results. The flow properties of Non-Newtonian fluids differ in many ways from those of Newtonian fluids. Many biological fluids (blood, for instance) exhibit a non-Newtonian behavior, as do many naturally occurring or technologically relevant fluids such as molten polymers, oil, mud, lava, salt solutions, paint, and so on. The term "complex flows" usually refers to those fluids presenting an "internal structure" (fluid mixtures, solutions, multiphase flows, and so on). Modern research on complex flows has increased considerably in recent years due to the many biological and industrial applications.
|
You may like...
|