0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Ultra-Low Energy Domain-Specific Instruction-Set Processors (Hardcover, 2010 ed.): Francky Catthoor, Praveen Raghavan, Andy... Ultra-Low Energy Domain-Specific Instruction-Set Processors (Hardcover, 2010 ed.)
Francky Catthoor, Praveen Raghavan, Andy Lambrechts, Murali Jayapala, Angeliki Kritikakou, …
R5,202 R4,353 Discovery Miles 43 530 Save R849 (16%) Ships in 12 - 17 working days

Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space.

In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.

Ultra-Low Energy Domain-Specific Instruction-Set Processors (Paperback, 2010 ed.): Francky Catthoor, Praveen Raghavan, Andy... Ultra-Low Energy Domain-Specific Instruction-Set Processors (Paperback, 2010 ed.)
Francky Catthoor, Praveen Raghavan, Andy Lambrechts, Murali Jayapala, Angeliki Kritikakou, …
R4,267 Discovery Miles 42 670 Ships in 10 - 15 working days

Modern consumers carry many electronic devices, like a mobile phone, digital camera, GPS, PDA and an MP3 player. The functionality of each of these devices has gone through an important evolution over recent years, with a steep increase in both the number of features as in the quality of the services that they provide. However, providing the required compute power to support (an uncompromised combination of) all this functionality is highly non-trivial. Designing processors that meet the demanding requirements of future mobile devices requires the optimization of the embedded system in general and of the embedded processors in particular, as they should strike the correct balance between flexibility, energy efficiency and performance. In general, a designer will try to minimize the energy consumption (as far as needed) for a given performance, with a sufficient flexibility. However, achieving this goal is already complex when looking at the processor in isolation, but, in reality, the processor is a single component in a more complex system. In order to design such complex system successfully, critical decisions during the design of each individual component should take into account effect on the other parts, with a clear goal to move to a global Pareto optimum in the complete multi-dimensional exploration space. In the complex, global design of battery-operated embedded systems, the focus of Ultra-Low Energy Domain-Specific Instruction-Set Processors is on the energy-aware architecture exploration of domain-specific instruction-set processors and the co-optimization of the datapath architecture, foreground memory, and instruction memory organisation with a link to the required mapping techniques or compiler steps at the early stages of the design. By performing an extensive energy breakdown experiment for a complete embedded platform, both energy and performance bottlenecks have been identified, together with the important relations between the different components. Based on this knowledge, architecture extensions are proposed for all the bottlenecks.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Understanding the Purpose and Power of…
Myles Munroe Paperback R280 R210 Discovery Miles 2 100
Breaking Bread - A Memoir
Jonathan Jansen Paperback R330 R220 Discovery Miles 2 200
Polly Pocket Flamingo Party Playset
R999 R859 Discovery Miles 8 590
Midnights
Taylor Swift CD R394 Discovery Miles 3 940
ZA Choker Necklace
R570 R399 Discovery Miles 3 990
Dog Man: The Scarlet Shedder
Dav Pilkey Hardcover R420 R328 Discovery Miles 3 280
Bug-A-Salt 3.0 Black Fly
 (1)
R999 R899 Discovery Miles 8 990
Christmas Nativity With House & Cross…
R1,699 R1,185 Discovery Miles 11 850
Women In Solitary - Inside The Female…
Shanthini Naidoo Paperback  (1)
R355 R305 Discovery Miles 3 050
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100

 

Partners