Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
Revue sur la theorie des D-modules et modeles d'operateurs pseudodifferentiells, A Survey on the Theory of D-modules. Models for Pseudodifferential Operators.- Fourier Transform and Differential Equations.- Excursions and Ito Calculus in Nelson's Stochastic Mechanics.- Stark-Wannier Resonant States.- Spectral Properties of Adiabatically Perturbed Differential Operators with the Periodic Coefficients.- Quantum Tunnelling for Bloch Electrons in Small Electric Fields.- Asymptotic Invariant Subspaces; Abiabatic Theorems and Block Diagonalisation.- On the Quantum Hall-Effect.- Magnetic Schroedinger Operators and Effective Hamiltonians.- Perturbations of Supersymmetric Systems in Quantum Mechanics.- On the Eigenvalues of a Perturbed Harmonic Oscillator.- On Topics in Spectral and Stochastic Analysis for Schroedinger Operators.- Asymptotic Observables in the N-Body Quantum Long Range Scattering.- Spectral Properties of Bent Quantum Wires.- Eigenfunction Expansions for Hyperbolic Laplacians.- The Method of Differential Inequalities.- Supersymmetric Quantum Mechanics.- Propagation des singularites GEVREY pour la diffraction.- Reduction and Geometric Prequantization at the Cotangent Level.- Dirac Particles in Magnetic Fields.- On the Quasi-Stationary Approach to Scattering for Perturbations Periodic in Time.- Existence, Uniqueness and Some Properties of Schroedinger Propagators.
Stochastic analysis is a field of mathematical research having numerous interactions with other domains of mathematics such as partial differential equations, riemannian path spaces, dynamical systems, optimization. It also has many links with applications in engineering, finance, quantum physics, and other fields. This book covers recent and diverse aspects of stochastic and infinite-dimensional analysis. The included papers are written from a variety of standpoints (white noise analysis, Malliavin calculus, quantum stochastic calculus) by the contributors, and provide a broad coverage of the subject. This volume will be useful to graduate students and research mathematicians wishing to get acquainted with recent developments in the field of stochastic analysis.
The relevance of commutator methods in spectral and scattering theory has been known for a long time, and numerous interesting results have been ob tained by such methods. The reader may find a description and references in the books by Putnam [Pu], Reed-Simon [RS] and Baumgartel-Wollenberg [BW] for example. A new point of view emerged around 1979 with the work of E. Mourre in which the method of locally conjugate operators was introduced. His idea proved to be remarkably fruitful in establishing detailed spectral properties of N-body Hamiltonians. A problem that was considered extremely difficult be fore that time, the proof of the absence of a singularly continuous spectrum for such operators, was then solved in a rather straightforward manner (by E. Mourre himself for N = 3 and by P. Perry, 1. Sigal and B. Simon for general N). The Mourre estimate, which is the main input of the method, also has consequences concerning the behaviour of N-body systems at large times. A deeper study of such propagation properties allowed 1. Sigal and A. Soffer in 1985 to prove existence and completeness of wave operators for N-body systems with short range interactions without implicit conditions on the potentials (for N = 3, similar results were obtained before by means of purely time-dependent methods by V. Enss and by K. Sinha, M. Krishna and P. Muthuramalingam). Our interest in commutator methods was raised by the major achievements mentioned above.
Jacques Bros has greatly advanced our present understanding of rigorous quantum field theory through numerous contributions; this book arose from an international symposium held in honour of Bros on the occasion of his 70th birthday. Key topics in this volume include: Analytic structures of Quantum Field Theory (QFT), renormalization group methods, gauge QFT, stability properties and extension of the axiomatic framework, QFT on models of curved spacetimes, QFT on noncommutative Minkowski spacetime.
This volume contains the proceedings of the First Ukrainian-French Romanian School "Algebraic and Geometric Methods in Mathematical Physics," held in Kaciveli, Crimea (Ukraine) from 1 September ti1114 September 1993. The School was organized by the generous support of the Ministry of Research and Space of France (MRE), the Academy of Sciences of Ukraine (ANU), the French National Center for Scientific Research (CNRS) and the State Committee for Science and Technologies of Ukraine (GKNT). Members of the International Scientific Committee were: J.-M. Bony (paris), A. Boutet de Monvel-Berthier (Paris, co-chairman), P. Cartier (paris), V. Drinfeld (Kharkov), V. Georgescu (Paris), J.L. Lebowitz (Rutgers), V. Marchenko (Kharkov, co-chairman), V.P. Maslov (Moscow), H. Mc-Kean (New-York), Yu. Mitropolsky (Kiev), G. Nenciu (Bucharest, co-chairman), S. Novikov (Moscow), G. Papanicolau (New-York), L. Pastur (Kharkov), J.-J. Sansuc (Paris). The School consisted of plenary lectures (morning sessions) and special sessions. The plenary lectures were intended to be accessible to all participants and plenary speakers were invited by the scientific organizing committee to give reviews of their own field of interest. The special sessions were devoted to a variety of more concrete and technical questions in the respective fields. According to the program the plenary lectures included in the volume are grouped in three chapters. The fourth chapter contains short communications."
Over the last decade, spin glass theory has turned from a fascinating part of t- oretical physics to a ?ourishing and rapidly growing subject of probability theory as well. These developments have been triggered to a large part by the mathem- ical understanding gained on the fascinating and previously mysterious "Parisi solution" of the Sherrington-Kirkpatrick mean ?eld model of spin glasses, due to the work of Guerra, Talagrand, and others. At the same time, new aspects and applications of the methods developed there have come up. The presentvolumecollects a number of reviewsaswellas shorterarticlesby lecturers at a summer school on spin glasses that was held in July 2007 in Paris. These articles range from pedagogical introductions to state of the art papers, covering the latest developments. In their whole, they give a nice overview on the current state of the ?eld from the mathematical side. The review by Bovier and Kurkova gives a concise introduction to mean ?eld models, starting with the Curie-Weiss model and moving over the Random Energymodels up to the Parisisolutionof the Sherrington-Kirkpatrikmodel. Ben Arous and Kuptsov present a more recent view and disordered systems through the so-called local energy statistics. They emphasize that there are many ways to look at Hamiltonians of disordered systems that make appear the Random Energy model (or independent random variables) as a universal mechanism for describing certain rare events. An important tool in the analysis of spin glasses are correlation identities.
The conjugate operator method is a powerful recently developed technique for studying spectral properties of self-adjoint operators. One of the purposes of this volume is to present a refinement of the original method due to Mourre leading to essentially optimal results in situations as varied as ordinary differential operators, pseudo-differential operators and N-body Schroedinger hamiltonians. Another topic is a new algebraic framework for the N-body problem allowing a simple and systematic treatment of large classes of many-channel hamiltonians. The monograph will be of interest to research mathematicians and mathematical physicists. The authors have made efforts to produce an essentially self-contained text, which makes it accessible to advanced students. Thus about one third of the book is devoted to the development of tools from functional analysis, in particular real interpolation theory for Banach spaces and functional calculus and Besov spaces associated with multi-parameter C0-groups. Certainly this monograph (containing a bibliography of 170 items) is a well-written contribution to this field which is suitable to stimulate further evolution of the theory. (Mathematical Reviews)
Proceedings of the Brasov Conference, Poiana Brasov 1989, Romania
This volume contains the proceedings of the First Ukrainian-French Romanian School "Algebraic and Geometric Methods in Mathematical Physics," held in Kaciveli, Crimea (Ukraine) from 1 September ti1114 September 1993. The School was organized by the generous support of the Ministry of Research and Space of France (MRE), the Academy of Sciences of Ukraine (ANU), the French National Center for Scientific Research (CNRS) and the State Committee for Science and Technologies of Ukraine (GKNT). Members of the International Scientific Committee were: J.-M. Bony (paris), A. Boutet de Monvel-Berthier (Paris, co-chairman), P. Cartier (paris), V. Drinfeld (Kharkov), V. Georgescu (Paris), J.L. Lebowitz (Rutgers), V. Marchenko (Kharkov, co-chairman), V.P. Maslov (Moscow), H. Mc-Kean (New-York), Yu. Mitropolsky (Kiev), G. Nenciu (Bucharest, co-chairman), S. Novikov (Moscow), G. Papanicolau (New-York), L. Pastur (Kharkov), J.-J. Sansuc (Paris). The School consisted of plenary lectures (morning sessions) and special sessions. The plenary lectures were intended to be accessible to all participants and plenary speakers were invited by the scientific organizing committee to give reviews of their own field of interest. The special sessions were devoted to a variety of more concrete and technical questions in the respective fields. According to the program the plenary lectures included in the volume are grouped in three chapters. The fourth chapter contains short communications."
Stochastic analysis is a field of mathematical research having numerous interactions with other domains of mathematics such as partial differential equations, riemannian path spaces, dynamical systems, optimization. It also has many links with applications in engineering, finance, quantum physics, and other fields. This book covers recent and diverse aspects of stochastic and infinite-dimensional analysis. The included papers are written from a variety of standpoints (white noise analysis, Malliavin calculus, quantum stochastic calculus) by the contributors, and provide a broad coverage of the subject. This volume will be useful to graduate students and research mathematicians wishing to get acquainted with recent developments in the field of stochastic analysis.
|
You may like...
Managing Pandemic Isolation With…
Antonio Cortijo Ocana, Vicent Martines, …
Hardcover
R6,303
Discovery Miles 63 030
|