![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
This volume compiles three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants, and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincare 's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincare and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov-Arnold-Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincare 's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincare and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
|
![]() ![]() You may like...
Heart Of A Strong Woman - From Daveyton…
Xoliswa Nduneni-Ngema, Fred Khumalo
Paperback
|