Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
The need for accurate computational procedures to evaluate detailed properties of gas phase chemical reactions is evident when one considers the wealth of information provided by laser, molecular beam and fast How experiments. By stressing ordinary scalar computers to their limiting performance quantum chemistry codes can already provide sufficiently accurate estimates of the stability of several small molecules and of the reactivity of a few elementary processes. However, the accurate characterization of a reactive process, even for small systems, is so demanding in terms of computer resources to make the use of supercomputers having vector and parallel features unavoidable. Sometimes to take full advantage from these features all is needed is a restructure of those parts of the computer code which perform vector and matrix manipulations and a parallel execution of its independent tasks. More often, a deeper restructure has to be carried out. This may involve the problem of choosing a suitable computational strategy or the more radical alternative of changing the theoretical treatment. There are cases, in fact, where theoretical approaches found to be inefficient on a scalar computer exhibit their full computational strength on a supercomputer.
The two-volume set LNCS 5592 and 5593 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2009, held in Seoul, Korea, in June/July, 2009. The two volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: computational methods, algorithms and scientific applications, high performance technical computing and networks, advanced and emerging applications, as well as information systems and information technologies. Moreover, submissions from more than 20 workshops and technical sessions contribute to this publication. These cover topics such as geographical analysis, urban modeling, spatial statistics, wireless and ad hoc networking, logical, scientific and computational aspects of pulse phenomena in transitions, high-performance computing and information visualization, sensor network and its applications, molecular simulations structures and processes, collective evolutionary systems, software engineering processes and applications, molecular simulations structures and processes, internet communication security, security and privacy in pervasive computing environments, and mobile communications.
The two-volume set LNCS 5592 and 5593 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2009, held in Seoul, Korea, in June/July, 2009. The two volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: computational methods, algorithms and scientific applications, high performance technical computing and networks, advanced and emerging applications, as well as information systems and information technologies. Moreover, submissions from more than 20 workshops and technical sessions contribute to this publication. These cover topics such as geographical analysis, urban modeling, spatial statistics, wireless and ad hoc networking, logical, scientific and computational aspects of pulse phenomena in transitions, high-performance computing and information visualization, sensor network and its applications, molecular simulations structures and processes, collective evolutionary systems, software engineering processes and applications, molecular simulations structures and processes, internet communication security, security and privacy in pervasive computing environments, and mobile communications.
The five-volume set LNCS 3980-3984 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2006. The volumes present a total of 664 papers organized according to the five major conference themes: computational methods, algorithms and applications high performance technical computing and networks advanced and emerging applications geometric modelling, graphics and visualization information systems and information technologies. This is Part V.
Theoretical treatment of the dynamics of chemical reactions has undergone a sp- tacular development during the last few years, prompted by the progress in experiments. Beam production,spectroscopicdetectionusinghighresolution,polarizedlasersallowing energy and angular momentum selection, etc. have advanced so much that the expe- ments now offer detailed scattering information for theory to explain and rationalize. At the same time advancesin computingand networkingtechnologiesfor heteregeneousand grid environments are giving new possibilities for theoretical studies of chemical react- ity. As a consequence, by now calculation of atom+diatom reactions has become routine, accurate methods have been developed to describe reactions in tetraatomic systems, n- adiabatic reactions are being studied in simultaneousexperimentaland theoretical efforts, andstatistical theoriesofunimolecularreactiondynamicsare appliedto systemsthatwere a mystery a few years ago. The increased interest in the ?eld is testi?ed by an intense activity of conferences, schools and collaborative networks. The NATO scienti?c division has traditionally c- tributed to this ?eld through supporting workshops and schools. Along this line we - ganized the NATO Advanced Research Workshop on the Theory of the Dynamics of Chemical Reactionsin Balatonfol .. dvar ' ,Hungaryin June, 2003. The workshophasgiven a snapshot of the current status of research in reaction dynamics. At the meeting 36 papers were presentedfollowedby enlighteningdiscussions. Accuratetime-dependentandti- independentmethodsofquantumscattering, treatmentof non-adiabaticprocesses, studies of associative and inelastic collisions, calculation of potential surfaces received increased attention.
The natural mission of Computational Science is to tackle all sorts of human problems and to work out intelligent automata aimed at alleviating the b- den of working out suitable tools for solving complex problems. For this reason ComputationalScience,thoughoriginatingfromtheneedtosolvethemostch- lenging problems in science and engineering (computational science is the key player in the ?ght to gain fundamental advances in astronomy, biology, che- stry, environmental science, physics and several other scienti?c and engineering disciplines) is increasingly turning its attention to all ?elds of human activity. In all activities, in fact, intensive computation, information handling, kn- ledge synthesis, the use of ad-hoc devices, etc. increasingly need to be exploited and coordinated regardless of the location of both the users and the (various and heterogeneous) computing platforms. As a result the key to understanding the explosive growth of this discipline lies in two adjectives that more and more appropriately refer to Computational Science and its applications: interoperable and ubiquitous. Numerous examples of ubiquitous and interoperable tools and applicationsaregiveninthepresentfourLNCSvolumescontainingthecontri- tions delivered at the 2004 International Conference on Computational Science and its Applications (ICCSA 2004) held in Assisi, Italy, May 14-17, 2004.
The natural mission of Computational Science is to tackle all sorts of human problems and to work out intelligent automata aimed at alleviating the b- den of working out suitable tools for solving complex problems. For this reason ComputationalScience, thoughoriginatingfromtheneedtosolvethemostch- lenging problems in science and engineering (computational science is the key player in the ?ght to gain fundamental advances in astronomy, biology, che- stry, environmental science, physics and several other scienti?c and engineering disciplines) is increasingly turning its attention to all ?elds of human activity. In all activities, in fact, intensive computation, information handling, kn- ledge synthesis, the use of ad-hoc devices, etc. increasingly need to be exploited and coordinated regardless of the location of both the users and the (various and heterogeneous) computing platforms. As a result the key to understanding the explosive growth of this discipline lies in two adjectives that more and more appropriately refer to Computational Science and its applications: interoperable and ubiquitous. Numerous examples of ubiquitous and interoperable tools and applicationsaregiveninthepresentfourLNCSvolumescontainingthecontri- tions delivered at the 2004 International Conference on Computational Science and its Applications (ICCSA 2004) held in Assisi, Italy, May 14-17, 2004
The natural mission of Computational Science is to tackle all sorts of human problems and to work out intelligent automata aimed at alleviating the b- den of working out suitable tools for solving complex problems. For this reason ComputationalScience, thoughoriginatingfromtheneedtosolvethemostch- lenging problems in science and engineering (computational science is the key player in the ?ght to gain fundamental advances in astronomy, biology, che- stry, environmental science, physics and several other scienti?c and engineering disciplines) is increasingly turning its attention to all ?elds of human activity. In all activities, in fact, intensive computation, information handling, kn- ledge synthesis, the use of ad-hoc devices, etc. increasingly need to be exploited and coordinated regardless of the location of both the users and the (various and heterogeneous) computing platforms. As a result the key to understanding the explosive growth of this discipline lies in two adjectives that more and more appropriately refer to Computational Science and its applications: interoperable and ubiquitous. Numerous examples of ubiquitous and interoperable tools and applicationsaregiveninthepresentfourLNCSvolumescontainingthecontri- tions delivered at the 2004 International Conference on Computational Science and its Applications (ICCSA 2004) held in Assisi, Italy, May 14-17, 2004
|
You may like...
Beauty And The Beast - Blu-Ray + DVD
Emma Watson, Dan Stevens, …
Blu-ray disc
R313
Discovery Miles 3 130
|