Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book provides an overview of radar waveform synthesis obtained as the result of computational optimization processes and covers the most challenging application fields. The book balances a practical point of view with a rigorous mathematical approach corroborated with a wealth of numerical study cases and some real experiments. Additionally, the book has a cross-disciplinary approach because it exploits cross-fertilization with the recent research and discoveries in optimization theory. The material of the book is organized into ten chapters, each one completed with a comprehensive list of references. The following topics are covered: recent advances of binary sequence designs and their applications; quadratic optimization for unimodular sequence synthesis and applications; a computational design of phase-only (possibly binary) sequences for radar systems; constrained radar code design for spectrally congested environments via quadratic optimization; robust transmit code and receive filter design for extended targets detection in clutter; optimizing radar transceiver for Doppler processing via non-convex programming; radar waveform design via the majorization-minimization framework; Lagrange programming neural network for radar waveform design; cognitive local ambiguity function shaping with spectral coexistence and experiments; and relative entropy based waveform design for MIMO radar. Targeted at an audience of radar engineers and researchers, this book provides thorough and up-to-date coverage of optimisation theory for radar waveform design.
Polarimetric Radar Signal Processing provides an overview of advanced techniques and technologies developed for polarimetric radars to meet challenging performance requirements. It aims to cover some of the most challenging application fields, including: target detection for active and passive surveillance systems, interference suppression, detection of temporal changes in a given scene, environment classification, automatic target recognition, non-cooperative target imaging, polarimetric coding in radar and SAR systems, pol-SAR ambiguities suppression, space-debris detection, tracking, and classification, estimation of biological and behavioural parameters of insects, precipitations localization as well as type and motion parameters estimation via real-life practical polarimetric weather radar. The book balances a practical point of view with a rigorous mathematical approach corroborated with a wealth of numerical case studies and real experiments. Additionally, the book has a cross-disciplinary approach as it aims to exploit cross-fertilization by the recent and latest research and discoveries in statistical signal processing theory and electromagnetism. Each chapter is self-contained and is written by renowned researchers in polarimetric radar signal processing. The emphasis of the book is on both theoretical results and practical applications that clearly show the potential benefits in radar performance using polarimetric diversity in different application domains. Cross referencing and a common notation have been realized so that the related material as well as equations can be easily connected. This significantly enhances the book's value as a reference. This book is addressed to systems engineers and their managers in civilian as well as defence companies; technical staff in procurement agencies and their technical advisers; students at MSc and PhD levels in signal processing, electrical engineering, systems and defence engineering; and any persons interested in applications of polarimetry theory to radar engineering.
Recently, various algorithms for radar signal detection that rely heavily upon complicated processing and/or antenna architectures have been the subject of much interest. These techniques owe their genesis to several factors. One is revolutionary technological advances in high-speed signal processing hardware and digital array radar technology. Another is the stress on requirements often imposed by defence applications in areas such as airborne early warning and homeland security. This book explores these emerging research thrusts in radar detection with advanced radar systems capable of operating in challenging scenarios with a plurality of interference sources, both man-made and natural. Topics covered include: adaptive radar detection in Gaussian interference with unknown spectral properties; invariance theory as an instrument to force the Constant False Alarm Rate (CFAR) property at the design stage; one- and two-stage detectors and their performances; operating scenarios where a small number of training data for spectral estimation is available; Bayesian radar detection to account for prior information in the interference covariance matrix; and radar detection in the presence of non-Gaussian interference. Detector design techniques based on a variety of criteria are thoroughly presented and CFAR issues are discussed. Performance analyses representative of practical airborne, as well as ground-based and shipborne, radar situations are shown. Results on real radar data are also discussed. Modern Radar Detection Theory provides a comprehensive reference on the latest developments in adaptive radar detection for researchers, advanced students and engineers working on statistical signal processing and its applications to radar systems.
The phrase 'waveform design and diversity' refers to an area of radar research that focuses on novel transmission strategies as a way to improve performance in a variety of civil, defense and homeland security applications. Three basic principles are at the core of waveform diversity. First is the principle that any and all knowledge of the operational environment should be exploited in system design and operation. Second is the principle of the fully adaptive system, that is, that the system should respond to dynamic environmental conditions. Third is the principle of measurement diversity as a way to increase system robustness and expand the design trade space. Waveform design and diversity concepts can be found dating back to the mid-twentieth century. However, it has only been in the past decade or so, as academics and practitioners have rushed to exploit recent advances in radar hardware component technology, such as arbitrary waveform generation and linear power amplification, that waveform diversity has become a distinct area of research. The purpose of this book is to survey this burgeoning field in a way that brings together the diverse yet complementary topics that comprise it. The topics covered range from the purely theoretical to the applied, and the treatment of these topics ranges from tutorial explanation to forward-looking research discussions. The topics treated in this book include: classical waveform design and its extensions through information theory, multiple-input multiple-output systems, and the bio-inspired sensing perspective; the exploration of measurement diversity through distributed radar systems, in both cooperative and non-cooperative configurations; the optimal adaptation of the transmit waveform for target detection, tracking, and identification; and more. This representative cross-section of topics provides the reader with a chance to see the three principles of waveform diversity at work, and will hopefully point the way to further advances in this exciting area of research.
|
You may like...
Terminator 6: Dark Fate
Linda Hamilton, Arnold Schwarzenegger
Blu-ray disc
(1)
R76 Discovery Miles 760
|