Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Large-scale, highly interconnected networks, which are often modeled as graphs, pervade both our society and the natural world around us. Uncertainty, on the other hand, is inherent in the underlying data due to a variety of reasons, such as noisy measurements, lack of precise information needs, inference and prediction models, or explicit manipulation, e.g., for privacy purposes. Therefore, uncertain, or probabilistic, graphs are increasingly used to represent noisy linked data in many emerging application scenarios, and they have recently become a hot topic in the database and data mining communities. Many classical algorithms such as reachability and shortest path queries become #P-complete and, thus, more expensive over uncertain graphs. Moreover, various complex queries and analytics are also emerging over uncertain networks, such as pattern matching, information diffusion, and influence maximization queries. In this book, we discuss the sources of uncertain graphs and their applications, uncertainty modeling, as well as the complexities and algorithmic advances on uncertain graphs processing in the context of both classical and emerging graph queries and analytics. We emphasize the current challenges and highlight some future research directions.
This book constitutes the refereed proceedings of the two International Workshops on Big-Graphs Online Querying, Big-O(Q) 2015, and Data Management and Analytics for Medicine and Healthcare, DMAH 2015, held at Waikoloa, Hawaii, USA on August 31 and September 4, 2015, in conjunction with the 41st International Conference on Very Large Data Bases, VLDB 2015. The 9 revised full papers presented together with 5 invited papers and 1 extended abstract were carefully reviewed and selected from 22 initial submissions. The papers are organized in topical sections on information retrieval and data analytics for electronic medical records; data management and visualization of medical data; biomedical data sharing and integration; medical imaging analytics; and big-graphs online querying.
|
You may like...
|