![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
For over half a century, an increasing number of satellites have fragmented in orbit, creating a large amount of hazardous orbital debris which threaten the safety of useful functioning satellites and space missions. This book discusses the theory behind these fragmentations followed by studies of actual cases.The book begins with a survey of satellite fragmentations in orbit and the consequent formation of orbital debris in chronological order. Next, the fundamental physical processes underlying satellite fragmentations are outlined and the methods of analyzing satellite fragmentations presented. The rest of the book presents analyses of the major satellite fragmentation events including accidental and intentional breakups, those due to explosions and collisions, as well as those belonging to the unknown category.
Orbital motion is a vital subject which has engaged the greatest minds in mathematics and physics from Kepler to Einstein. It has gained in importance in the space age and touches every scientist in any field of space science. Still, there is almost a total dearth of books in this important field at the elementary and intermediate levels - at best a chapter in an undergraduate or graduate mechanics course.This book addresses that need, beginning with Kepler's laws of planetary motion followed by Newton's law of gravitation. Average and extremum values of dynamical variables are treated and the central force problem is formally discussed. The planetary problem in Cartesian and complex coordinates is tackled and examples of Keplerian motion in the solar system are also considered. The final part of the book is devoted to the motion of artificial Earth satellites and the modifications of their orbits by perturbing forces of various kinds.
Orbital motion is a vital subject which has engaged the greatest minds in mathematics and physics from Kepler to Einstein. It has gained in importance in the space age and touches every scientist in any field of space science. Still, there is almost a total dearth of books in this important field at the elementary and intermediate levels - at best a chapter in an undergraduate or graduate mechanics course.This book addresses that need, beginning with Kepler's laws of planetary motion followed by Newton's law of gravitation. Average and extremum values of dynamical variables are treated and the central force problem is formally discussed. The planetary problem in Cartesian and complex coordinates is tackled and examples of Keplerian motion in the solar system are also considered. The final part of the book is devoted to the motion of artificial Earth satellites and the modifications of their orbits by perturbing forces of various kinds.
|
![]() ![]() You may like...
Hydroformylation for Organic Synthesis
Maurizio Taddei, Andre Mann
Hardcover
R8,847
Discovery Miles 88 470
|