Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
Over the last ten years, elements of the formalism of quantum mechanics have been successfully applied beyond physics in areas such as psychology (especially cognition), economics and finance (especially in the formalization of so-called ‘decision making’), political science, and molecular biology. An important stream of work along these lines, commonly under the heading of quantum-like modeling, has been published in well regarded scientific journals, and major publishers have devoted entire books to the topic. This Festschrift honors a key figure in this field of research: Andrei Khrennikov, who made momentous contributions to it and to quantum foundations themselves. While honoring these contributions, and in order to do so, this Festschrift orients its reader toward the future rather than focusing on the past: it addresses future challenges and establishes the way forward in both domains, quantum-like modeling and quantum foundations. A while ago, in response to the developments of using the quantum formalism outside of quantum mechanics, the eminent quantum physicist Anton Zeilinger said, ‘Why should it be precisely the quantum mechanics formalism? Maybe its generalization would be more adequate…’ This volume responds to this statement by both showing the reasons for the continuing importance of quantum formalism and yet also considering pathways to such generalizations. Khrennikov’s work has been indispensable in establishing the great promise of quantum and quantum-like thinking in shaping the future of scientific research across the disciplines.
This book presents quantum theory as a theory based on new relationships among matter, thought, and experimental technology, as against those previously found in physics, relationships that also redefine those between mathematics and physics in quantum theory. The argument of the book is based on its title concept, reality without realism (RWR), and in the corresponding view, the RWR view, of quantum theory. The book considers, from this perspective, the thinking of Bohr, Heisenberg, Schroedinger, and Dirac, with the aim of bringing together the philosophy and history of quantum theory. With quantum theory, the book argues, the architecture of thought in theoretical physics was radically changed by the irreducible role of experimental technology in the constitution of physical phenomena, accordingly, no longer defined independently by matter alone, as they were in classical physics or relativity. Or so it appeared. For, quantum theory, the book further argues, made us realize that experimental technology, beginning with that of our bodies, irreducibly shapes all physical phenomena, and thus makes us rethink the relationships among matter, thought, and technology in all of physics.
The book considers foundational thinking in quantum theory, focusing on the role the fundamental principles and principle thinking there, including thinking that leads to the invention of new principles, which is, the book contends, one of the ultimate achievements of theoretical thinking in physics and beyond. The focus on principles, prominent during the rise and in the immediate aftermath of quantum theory, has been uncommon in more recent discussions and debates concerning it. The book argues, however, that exploring the fundamental principles and principle thinking is exceptionally helpful in addressing the key issues at stake in quantum foundations and the seemingly interminable debates concerning them. Principle thinking led to major breakthroughs throughout the history of quantum theory, beginning with the old quantum theory and quantum mechanics, the first definitive quantum theory, which it remains within its proper (nonrelativistic) scope. It has, the book also argues, been equally important in quantum field theory, which has been the frontier of quantum theory for quite a while now, and more recently, in quantum information theory, where principle thinking was given new prominence. The approach allows the book to develop a new understanding of both the history and philosophy of quantum theory, from Planck's quantum to the Higgs boson, and beyond, and of the thinking the key founding figures, such as Einstein, Bohr, Heisenberg, Schroedinger, and Dirac, as well as some among more recent theorists. The book also extensively considers the nature of quantum probability, and contains a new interpretation of quantum mechanics, "the statistical Copenhagen interpretation." Overall, the book's argument is guided by what Heisenberg called "the spirit of Copenhagen," which is defined by three great divorces from the preceding foundational thinking in physics-reality from realism, probability from causality, and locality from relativity-and defined the fundamental principles of quantum theory accordingly.
Reading Bohr: Physics and Philosophy offers a new perspective on
Niels Bohr's interpretation of quantum mechanics as
complementarity, and on the relationships between physics and
philosophy in Bohr's work, which has had momentous significance for
our understanding of quantum theory and of the nature of knowledge
in general. Philosophically, the book reassesses Bohr's place in
the Western philosophical tradition, from Kant and Hegel on.
Physically, it reconsiders the main issues at stake in the
Bohr-Einstein confrontation and in the ongoing debates concerning
quantum physics. It also devotes greater attention than in most
commentaries on Bohr to the key developments and transformations of
his thinking concerning complementarity.
This book offers an exploration of the relationships between epistemology and probability in the work of Niels Bohr, Werner Heisenberg, and Erwin Schro- ] dinger, and in quantum mechanics and in modern physics as a whole. It also considers the implications of these relationships and of quantum theory itself for our understanding of the nature of human thinking and knowledge in general, or the ''epistemological lesson of quantum mechanics, '' as Bohr liked 1 to say. These implications are radical and controversial. While they have been seen as scientifically productive and intellectually liberating to some, Bohr and Heisenberg among them, they have been troublesome to many others, such as Schro] dinger and, most prominently, Albert Einstein. Einstein famously refused to believe that God would resort to playing dice or rather to playing with nature in the way quantum mechanics appeared to suggest, which is indeed quite different from playing dice. According to his later (sometime around 1953) remark, a lesser known or commented upon but arguably more important one: ''That the Lord should play dice], all right; but that He should gamble according to definite rules i. e., according to the rules of quantum mechanics, rather than 2 by merely throwing dice], that is beyond me. '' Although Einstein's invocation of God is taken literally sometimes, he was not talking about God but about the way nature works. Bohr's reply on an earlier occasion to Einstein's question 1 Cf."
The book considers foundational thinking in quantum theory, focusing on the role the fundamental principles and principle thinking there, including thinking that leads to the invention of new principles, which is, the book contends, one of the ultimate achievements of theoretical thinking in physics and beyond. The focus on principles, prominent during the rise and in the immediate aftermath of quantum theory, has been uncommon in more recent discussions and debates concerning it. The book argues, however, that exploring the fundamental principles and principle thinking is exceptionally helpful in addressing the key issues at stake in quantum foundations and the seemingly interminable debates concerning them. Principle thinking led to major breakthroughs throughout the history of quantum theory, beginning with the old quantum theory and quantum mechanics, the first definitive quantum theory, which it remains within its proper (nonrelativistic) scope. It has, the book also argues, been equally important in quantum field theory, which has been the frontier of quantum theory for quite a while now, and more recently, in quantum information theory, where principle thinking was given new prominence. The approach allows the book to develop a new understanding of both the history and philosophy of quantum theory, from Planck's quantum to the Higgs boson, and beyond, and of the thinking the key founding figures, such as Einstein, Bohr, Heisenberg, Schroedinger, and Dirac, as well as some among more recent theorists. The book also extensively considers the nature of quantum probability, and contains a new interpretation of quantum mechanics, "the statistical Copenhagen interpretation." Overall, the book's argument is guided by what Heisenberg called "the spirit of Copenhagen," which is defined by three great divorces from the preceding foundational thinking in physics-reality from realism, probability from causality, and locality from relativity-and defined the fundamental principles of quantum theory accordingly.
This book offers a discussion of Niels Bohr's conception of "complementarity," arguably his greatest contribution to physics and philosophy. By tracing Bohr's work from his 1913 atomic theory to the introduction and then refinement of the idea of complementarity, and by explicating different meanings of "complementarity" in Bohr and the relationships between it and Bohr's other concepts, the book aims to offer a contained and accessible, and yet sufficiently comprehensive account of Bohr's work on complementarity and its significance.
This book offers an exploration of the relationships between epistemology and probability in the work of Niels Bohr, Werner Heisenberg, and Erwin Schro- ] dinger, and in quantum mechanics and in modern physics as a whole. It also considers the implications of these relationships and of quantum theory itself for our understanding of the nature of human thinking and knowledge in general, or the ''epistemological lesson of quantum mechanics, '' as Bohr liked 1 to say. These implications are radical and controversial. While they have been seen as scientifically productive and intellectually liberating to some, Bohr and Heisenberg among them, they have been troublesome to many others, such as Schro] dinger and, most prominently, Albert Einstein. Einstein famously refused to believe that God would resort to playing dice or rather to playing with nature in the way quantum mechanics appeared to suggest, which is indeed quite different from playing dice. According to his later (sometime around 1953) remark, a lesser known or commented upon but arguably more important one: ''That the Lord should play dice], all right; but that He should gamble according to definite rules i. e., according to the rules of quantum mechanics, rather than 2 by merely throwing dice], that is beyond me. '' Although Einstein's invocation of God is taken literally sometimes, he was not talking about God but about the way nature works. Bohr's reply on an earlier occasion to Einstein's question 1 Cf."
Reading Bohr: Physics and Philosophy offers a new perspective on
Niels Bohr's interpretation of quantum mechanics as
complementarity, and on the relationships between physics and
philosophy in Bohr's work, which has had momentous significance for
our understanding of quantum theory and of the nature of knowledge
in general. Philosophically, the book reassesses Bohr's place in
the Western philosophical tradition, from Kant and Hegel on.
Physically, it reconsiders the main issues at stake in the
Bohr-Einstein confrontation and in the ongoing debates concerning
quantum physics. It also devotes greater attention than in most
commentaries on Bohr to the key developments and transformations of
his thinking concerning complementarity.
This book presents quantum theory as a theory based on new relationships among matter, thought, and experimental technology, as against those previously found in physics, relationships that also redefine those between mathematics and physics in quantum theory. The argument of the book is based on its title concept, reality without realism (RWR), and in the corresponding view, the RWR view, of quantum theory. The book considers, from this perspective, the thinking of Bohr, Heisenberg, Schroedinger, and Dirac, with the aim of bringing together the philosophy and history of quantum theory. With quantum theory, the book argues, the architecture of thought in theoretical physics was radically changed by the irreducible role of experimental technology in the constitution of physical phenomena, accordingly, no longer defined independently by matter alone, as they were in classical physics or relativity. Or so it appeared. For, quantum theory, the book further argues, made us realize that experimental technology, beginning with that of our bodies, irreducibly shapes all physical phenomena, and thus makes us rethink the relationships among matter, thought, and technology in all of physics.
Many commentators have remarked in passing on the resonance between
deconstructionist theory and certain ideas of quantum physics. In
this book, Arkady Plotnitsky rigorously elaborates the similarities
and differences between the two by focusing on the work of Niels
Bohr and Jacques Derrida. In detailed considerations of Bohr's
notion of complementarity and his debates with Einstein, and in
analysis of Derrida's work via Georges Bataille's concept of
general economy, Plotnitsky demonstrates the value of exploring
these theories in relation to each other.
Mathematics, Science, and Postclassical Theory is a unique collection of essays dealing with the intersections between science and mathematics and the radical reconceptions of knowledge, language, proof, truth, and reality currently emerging from poststructuralist literary theory, constructivist history and sociology of science, and related work in contemporary philosophy. Featuring a distinguished group of international contributors, this volume engages themes and issues central to current theoretical debates in virtually all disciplines: agency, causality, determinacy, representation, and the social dynamics of knowledge. In a substantive introductory essay, the editors explain the notion of "postclassical theory" and discuss the significance of ideas such as emergence and undecidability in current work in and on science and mathematics. Other essays include a witty examination of the relations among mathematical thinking, writing, and the technologies of virtual reality; an essay that reconstructs the conceptual practices that led to a crucial mathematical discovery-or construction-in the 19th century; a discussion of the implications of Bohr's complementarity principle for classical ideas of reality; an examination of scientific laboratories as "hybrid" communities of humans and nonhumans; an analysis of metaphors of control, purpose, and necessity in contemporary biology; an exploration of truth and lies, and the play of words and numbers in Shakespeare, Frege, Wittgenstein, and Beckett; and a final chapter on recent engagements, or nonengagements, between rationalist/realist philosophy of science and contemporary science studies. Contributors. Malcolm Ashmore, Michel Callon, Owen Flanagan, John Law, Susan Oyama, Andrew Pickering, Arkady Plotnitsky, Brian Rotman, Barbara Herrnstein Smith, John Vignaux Smyth, E. Roy Weintraub
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|