Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book constitutes the conference proceedings of the 17th International Symposium on Intelligent Data Analysis, which was held in October 2018 in 's-Hertogenbosch, the Netherlands. The traditional focus of the IDA symposium series is on end-to-end intelligent support for data analysis. The 29 full papers presented in this book were carefully reviewed and selected from 65 submissions. The papers cover all aspects of intelligent data analysis, including papers on intelligent support for modeling and analyzing data from complex, dynamical systems.
This book constitutes the refereed conference proceedings of the 12th International Conference on Intelligent Data Analysis, which was held in October 2013 in London, UK. The 36 revised full papers together with 3 invited papers were carefully reviewed and selected from 84 submissions handling all kinds of modeling and analysis methods, irrespective of discipline. The papers cover all aspects of intelligent data analysis, including papers on intelligent support for modeling and analyzing data from complex, dynamical systems.
The general theme of the Intelligent Data Analysis (IDA) Symposia is the - telligent use of computers in complex data analysis problems. The ?eld has matured su?ciently that some re-considerationof our objectives was required in order to retain the distinctiveness of IDA. Thus, in addition to the more tra- tional algorithm- and application-oriented submissions, we sought submissions that speci?cally focus on aspects of the data analysis process. For example, - teractive tools to guide and support data analysis in complex scenarios. With the increasingavailabilityofautomaticallycollecteddata,toolsthatintelligently support and assist human analysts are becoming important. IDA-09, the 8th International Symposium on Intelligent Data Analysis, took place in Lyon from August 31 to September 2, 2009. The invited speakers were PaulCohen(UniversityofArizona,USA)andPabloJensen(ENSLyon,France). The meeting received more than 80 submissions. The Programme Committee selected 33 submissions for publication: 18 for full oral presentation, and 15 for poster and short oralpresentation. Eachcontribution was evaluated by three expertsandhas beenallocated12pagesintheproceedings.Theacceptedpapers cover a broad range of topics and applications, and include contributions on the re? ned focus of IDA.
Introduction The dramatic increase in available computer storage capacity over the last 10 years has led to the creation of very large databases of scienti?c and commercial information. The need to analyze these masses of data has led to the evolution of the new ?eld knowledge discovery in databases (KDD) at the intersection of machine learning, statistics and database technology. Being interdisciplinary by nature, the ?eld o?ers the opportunity to combine the expertise of di?erent ?elds intoacommonobjective.Moreover, withineach?elddiversemethodshave been developed and justi?ed with respect to di?erent quality criteria. We have toinvestigatehowthesemethods cancontributeto solvingthe problemofKDD. Traditionally, KDD was seeking to ?nd global models for the data that - plain most of the instances of the database and describe the general structure of the data. Examples are statistical time series models, cluster models, logic programs with high coverageor classi?cation models like decision trees or linear decision functions. In practice, though, the use of these models often is very l- ited, because global models tend to ?nd only the obvious patterns in the data, 1 which domain experts already are aware of . What is really of interest to the users are the local patterns that deviate from the already-known background knowledge. David Hand, who organized a workshop in 2002, proposed the new ?eld of local patterns
The3rdInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2004) was held in Pisa, Italy, on September 20, 2004 as part of the 15th European Conference on Machine Learning and the 8th European Conference onPrinciplesandPracticeofKnowledgeDiscoveryinDatabases(ECML/PKDD 2004). Ever since the start of the ?eld of data mining, it has been realized that the knowledge discovery and data mining process should be integrated into database technology. This idea has been formalized in the concept of inductive databases, introduced by Imielinski and Mannila (CACM 1996, 39(11)). In general, an inductive database is a database that supports data mining and the knowledge discovery process in a natural and elegant way. In addition to the usual data, it also contains inductive generalizations (e.g., patterns, models) extracted from the data. Within this framework, knowledge discovery is an - teractive process in which users can query the inductive database to gain insight to the data and the patterns and models within that data. Despite many recent developments, there still exists a pressing need to - derstandthecentralissuesininductivedatabases.Thisworkshopaimedtobring together database and data mining researchers and practitioners who are int- ested in the numerous challenges that inductive databases o? ers. This workshop followed the previous two workshops: KDID 2002 held in Helsinki, Finland, and KDID 2003 held in Cavtat-Dubrovnik, Croatia.
This book constitutes the refereed proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery, PKDD 2001, held in Freiburg, Germany, in September 2001.The 40 revised full papers presented together with four invited contributions were carefully reviewed and selected from close to 100 submissions. Among the topics addressed are hidden Markov models, text summarization, supervised learning, unsupervised learning, demographic data analysis, phenotype data mining, spatio-temporal clustering, Web-usage analysis, association rules, clustering algorithms, time series analysis, rule discovery, text categorization, self-organizing maps, filtering, reinforcemant learning, support vector machines, visual data mining, and machine learning.
|
You may like...
|