Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This is an introductory book on Non-Commutative Probability or Free Probability and Large Dimensional Random Matrices. Basic concepts of free probability are introduced by analogy with classical probability in a lucid and quick manner. It then develops the results on the convergence of large dimensional random matrices, with a special focus on the interesting connections to free probability. The book assumes almost no prerequisite for the most part. However, familiarity with the basic convergence concepts in probability and a bit of mathematical maturity will be helpful. Combinatorial properties of non-crossing partitions, including the Moebius function play a central role in introducing free probability. Free independence is defined via free cumulants in analogy with the way classical independence can be defined via classical cumulants. Free cumulants are introduced through the Moebius function. Free product probability spaces are constructed using free cumulants. Marginal and joint tracial convergence of large dimensional random matrices such as the Wigner, elliptic, sample covariance, cross-covariance, Toeplitz, Circulant and Hankel are discussed. Convergence of the empirical spectral distribution is discussed for symmetric matrices. Asymptotic freeness results for random matrices, including some recent ones, are discussed in detail. These clarify the structure of the limits for joint convergence of random matrices. Asymptotic freeness of independent sample covariance matrices is also demonstrated via embedding into Wigner matrices. Exercises, at advanced undergraduate and graduate level, are provided in each chapter.
Circulant matrices have been around for a long time and have been extensively used in many scientific areas. This book studies the properties of the eigenvalues for various types of circulant matrices, such as the usual circulant, the reverse circulant, and the k-circulant when the dimension of the matrices grow and the entries are random. In particular, the behavior of the spectral distribution, of the spectral radius and of the appropriate point processes are developed systematically using the method of moments and the various powerful normal approximation results. This behavior varies according as the entries are independent, are from a linear process, and are light- or heavy-tailed. Arup Bose obtained his B.Stat., M.Stat. and Ph.D. degrees from the Indian Statistical Institute. He has been on its faculty at the Theoretical Statistics and Mathematics Unit, Kolkata, India since 1991. He is a Fellow of the Institute of Mathematical Statistics, and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award. He is the author of three books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee) and U-Statistics, M_m-Estimators and Resampling (with Snigdhansu Chatterjee). Koushik Saha obtained a B.Sc. in Mathematics from Ramakrishna Mission Vidyamandiara, Belur and an M.Sc. in Mathematics from Indian Institute of Technology Bombay. He obtained his Ph.D. degree from the Indian Statistical Institute under the supervision of Arup Bose. His thesis on circulant matrices received high praise from the reviewers. He has been on the faculty of the Department of Mathematics, Indian Institute of Technology Bombay since 2014.
Large Covariance and Autocovariance Matrices brings together a collection of recent results on sample covariance and autocovariance matrices in high-dimensional models and novel ideas on how to use them for statistical inference in one or more high-dimensional time series models. The prerequisites include knowledge of elementary multivariate analysis, basic time series analysis and basic results in stochastic convergence. Part I is on different methods of estimation of large covariance matrices and auto-covariance matrices and properties of these estimators. Part II covers the relevant material on random matrix theory and non-commutative probability. Part III provides results on limit spectra and asymptotic normality of traces of symmetric matrix polynomial functions of sample auto-covariance matrices in high-dimensional linear time series models. These are used to develop graphical and significance tests for different hypotheses involving one or more independent high-dimensional linear time series. The book should be of interest to people in econometrics and statistics (large covariance matrices and high-dimensional time series), mathematics (random matrices and free probability) and computer science (wireless communication). Parts of it can be used in post-graduate courses on high-dimensional statistical inference, high-dimensional random matrices and high-dimensional time series models. It should be particularly attractive to researchers developing statistical methods in high-dimensional time series models. Arup Bose is a professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in mathematical statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been editor of Sankhya for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His first book Patterned Random Matrices was also published by Chapman & Hall. He has a forthcoming graduate text U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee) to be published by Hindustan Book Agency. Monika Bhattacharjee is a post-doctoral fellow at the Informatics Institute, University of Florida. After graduating from St. Xavier's College, Kolkata, she obtained her master's in 2012 and PhD in 2016 from the Indian Statistical Institute. Her thesis in high-dimensional covariance and auto-covariance matrices, written under the supervision of Dr. Bose, has received high acclaim.
Large dimensional random matrices (LDRM) with specific patterns arise in econometrics, computer science, mathematics, physics, and statistics. This book provides an easy initiation to LDRM. Through a unified approach, we investigate the existence and properties of the limiting spectral distribution (LSD) of different patterned random matrices as the dimension grows. The main ingredients are the method of moments and normal approximation with rudimentary combinatorics for support. Some elementary results from matrix theory are also used. By stretching the moment arguments, we also have a brush with the intriguing but difficult concepts of joint convergence of sequences of random matrices and its ramifications. This book covers the Wigner matrix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample autocovariance matrix and the k-Circulant matrices. Quick and simple proofs of their LSDs are provided and it is shown how the semi-circle law and the Marchenko-Pastur law arise as the LSDs of the first two matrices. Extending the basic approach, we also establish interesting limits for some triangular matrices, band matrices, balanced matrices, and the sample autocovariance matrix. We also study the joint convergence of several patterned matrices, and show that independent Wigner matrices converge jointly and are asymptotically free of other patterned matrices. Arup Bose is a Professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in Mathematical Statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been the Editor of Sankyha for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His forthcoming books are the monograph, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), to be published by Chapman & Hall/CRC Press, and a graduate text, U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee), to be published by Hindustan Book Agency.
Large Covariance and Autocovariance Matrices brings together a collection of recent results on sample covariance and autocovariance matrices in high-dimensional models and novel ideas on how to use them for statistical inference in one or more high-dimensional time series models. The prerequisites include knowledge of elementary multivariate analysis, basic time series analysis and basic results in stochastic convergence. Part I is on different methods of estimation of large covariance matrices and auto-covariance matrices and properties of these estimators. Part II covers the relevant material on random matrix theory and non-commutative probability. Part III provides results on limit spectra and asymptotic normality of traces of symmetric matrix polynomial functions of sample auto-covariance matrices in high-dimensional linear time series models. These are used to develop graphical and significance tests for different hypotheses involving one or more independent high-dimensional linear time series. The book should be of interest to people in econometrics and statistics (large covariance matrices and high-dimensional time series), mathematics (random matrices and free probability) and computer science (wireless communication). Parts of it can be used in post-graduate courses on high-dimensional statistical inference, high-dimensional random matrices and high-dimensional time series models. It should be particularly attractive to researchers developing statistical methods in high-dimensional time series models. Arup Bose is a professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in mathematical statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been editor of Sankhya for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His first book Patterned Random Matrices was also published by Chapman & Hall. He has a forthcoming graduate text U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee) to be published by Hindustan Book Agency. Monika Bhattacharjee is a post-doctoral fellow at the Informatics Institute, University of Florida. After graduating from St. Xavier's College, Kolkata, she obtained her master's in 2012 and PhD in 2016 from the Indian Statistical Institute. Her thesis in high-dimensional covariance and auto-covariance matrices, written under the supervision of Dr. Bose, has received high acclaim.
Large dimensional random matrices (LDRM) with specific patterns arise in econometrics, computer science, mathematics, physics, and statistics. This book provides an easy initiation to LDRM. Through a unified approach, we investigate the existence and properties of the limiting spectral distribution (LSD) of different patterned random matrices as the dimension grows. The main ingredients are the method of moments and normal approximation with rudimentary combinatorics for support. Some elementary results from matrix theory are also used. By stretching the moment arguments, we also have a brush with the intriguing but difficult concepts of joint convergence of sequences of random matrices and its ramifications. This book covers the Wigner matrix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample autocovariance matrix and the k-Circulant matrices. Quick and simple proofs of their LSDs are provided and it is shown how the semi-circle law and the Marchenko-Pastur law arise as the LSDs of the first two matrices. Extending the basic approach, we also establish interesting limits for some triangular matrices, band matrices, balanced matrices, and the sample autocovariance matrix. We also study the joint convergence of several patterned matrices, and show that independent Wigner matrices converge jointly and are asymptotically free of other patterned matrices. Arup Bose is a Professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in Mathematical Statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been the Editor of Sankyha for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His forthcoming books are the monograph, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), to be published by Chapman & Hall/CRC Press, and a graduate text, U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee), to be published by Hindustan Book Agency.
Circulant matrices have been around for a long time and have been extensively used in many scientific areas. This book studies the properties of the eigenvalues for various types of circulant matrices, such as the usual circulant, the reverse circulant, and the k-circulant when the dimension of the matrices grow and the entries are random. In particular, the behavior of the spectral distribution, of the spectral radius and of the appropriate point processes are developed systematically using the method of moments and the various powerful normal approximation results. This behavior varies according as the entries are independent, are from a linear process, and are light- or heavy-tailed. Arup Bose obtained his B.Stat., M.Stat. and Ph.D. degrees from the Indian Statistical Institute. He has been on its faculty at the Theoretical Statistics and Mathematics Unit, Kolkata, India since 1991. He is a Fellow of the Institute of Mathematical Statistics, and of all three national science academies of India. He is a recipient of the S.S. Bhatnagar Prize and the C.R. Rao Award. He is the author of three books: Patterned Random Matrices, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee) and U-Statistics, M_m-Estimators and Resampling (with Snigdhansu Chatterjee). Koushik Saha obtained a B.Sc. in Mathematics from Ramakrishna Mission Vidyamandiara, Belur and an M.Sc. in Mathematics from Indian Institute of Technology Bombay. He obtained his Ph.D. degree from the Indian Statistical Institute under the supervision of Arup Bose. His thesis on circulant matrices received high praise from the reviewers. He has been on the faculty of the Department of Mathematics, Indian Institute of Technology Bombay since 2014.
|
You may like...
|