|
Showing 1 - 1 of
1 matches in All Departments
Due to its inherent time-scale locality characteristics, the
discrete wavelet transform (DWT) has received considerable
attention in signal/image processing. Wavelet transforms have
excellent energy compaction characteristics and can provide perfect
reconstruction. The shifting (translation) and scaling (dilation)
are unique to wavelets. Orthogonality of wavelets with respect to
dilations leads to multigrid representation. As the computation of
DWT involves filtering, an efficient filtering process is essential
in DWT hardware implementation. In the multistage DWT, coefficients
are calculated recursively, and in addition to the wavelet
decomposition stage, extra space is required to store the
intermediate coefficients. Hence, the overall performance depends
significantly on the precision of the intermediate DWT
coefficients. This work presents new implementation techniques of
DWT, that are efficient in terms of computation, storage, and with
better signal-to-noise ratio in the reconstructed signal.
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.