![]() |
![]() |
Your cart is empty |
||
Showing 1 - 13 of 13 matches in All Departments
This book constitutes the refereed post-conference proceedings of the Third IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2020, held in Chennai, India, in February 2020.The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: computational intelligence for text analysis; computational intelligence for image and video analysis; and data science.
The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases.
Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.
This book presents some of the most recent research results in the area of machine learning and robot perception. The chapters represent new ways of solving real-world problems. The book covers topics such as intelligent object detection, foveated vision systems, online learning paradigms, reinforcement learning for a mobile robot, object tracking and motion estimation, 3D model construction, computer vision system and user modelling using dialogue strategies. This book will appeal to researchers, senior undergraduate/postgraduate students, application engineers and scientists.
This review volume provides from both theoretical and application points of views, recent developments and state-of-the-art reviews in various areas of pattern recognition, image processing, machine learning, soft computing, data mining and web intelligence. Machine Interpretation of Patterns: Image Analysis and Data Mining is an essential and invaluable resource for professionals and advanced graduates in computer science, mathematics and life sciences. It can also be considered as an integrated volume to researchers interested in doing interdisciplinary research where computer science is a component.
This book constitutes the refereed post-conference proceedings of the Third IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2020, held in Chennai, India, in February 2020.The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: computational intelligence for text analysis; computational intelligence for image and video analysis; and data science.
Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search in the space of candidate solutions (for instance, rules or another form of knowledge representation).
This book constitutes the refereed proceedings of the 5th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2013, held in Kolkata, India in December 2013. The 101 revised papers presented together with 9 invited talks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on pattern recognition; machine learning; image processing; speech and video processing; medical imaging; document image processing; soft computing; bioinformatics and computational biology; and social media mining.
The present volume provides a collection of seven articles containing new and high quality research results demonstrating the significance of Multi-objective Evolutionary Algorithms (MOEA) for data mining tasks in Knowledge Discovery from Databases (KDD). These articles are written by leading experts around the world. It is shown how the different MOEAs can be utilized, both in individual and integrated manner, in various ways to efficiently mine data from large databases.
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.
This book constitutes the refereed proceedings of the Second International Conference on Pattern Recognition and Machine Intelligence, PReMI 2007, held in Kolkata, India in December 2007. The 82 revised papers presented were carefully reviewed and selected from 241 submissions. The papers are organized in topical sections on pattern recognition, image analysis, soft computing and applications, data mining and knowledge discovery, bioinformatics, signal and speech processing, document analysis and text mining, biometrics, and video analysis.
This book constitutes the refereed post-conference proceedings of the 5th International Conference on Mining Intelligence and Knowledge Exploration, MIKE 2017, held in Hyderabad, India, in December 2017. The 40 full papers presented were carefully reviewed and selected from 139 submissions. The papers were grouped into various subtopics including arti ficial intelligence, machine learning, image processing, pattern recognition, speech processing, information retrieval, natural language processing, social network analysis, security, and fuzzy rough sets.
|
![]() ![]() You may like...
|