![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Observing our Universe and its evolution with ever increasing sensitivity from ground-based or space-borne telescopes is posing great challenges to Fundamental Physics and Astronomy. The remnant cosmic microwave background, as beautifully measured by successive space missions COBE, WMAP, and now PLANCK, provides a unique probe of the very early stages of our Universe. The red-shift of atomic lines in distant galaxies, the dynamics of pulsars, the large scale structure of galaxies, and black holes are a few manifestations of the theory of General Relativity. Yet, today, we understand only 4% of the mass of our Universe, the rest being called dark energy and dark matter, both of unknown origin! A second family of space missions is currently emerging; rather than designing ever more re nedobservationalinstruments,physicistsandengineersseekalsotousethespaceenvironment to perform high-precision tests of the fundamental laws of physics. The technology required for such tests has become available only over the course of the last decades. Clocks of high accuracy are an example. They are based on advances in atomic and laser physics, such as cold atoms, enabling a new generation of highly sensitive quantum sensors for ground and space experiments. Two experiments in space have now tested Einstein's relativity theory: * Several decades ago, Gravity Probe A con rmed the accuracy of the gravitational red-shift ?5 according to general relativity to a level of 7x 10 [R. F. C. Vessot et al. , Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser, Phys. Rev. Lett. 45, 2081-2084 (1980)].
Observing our Universe and its evolution with ever increasing sensitivity from ground-based or space-borne telescopes is posing great challenges to Fundamental Physics and Astronomy. The remnant cosmic microwave background, as beautifully measured by successive space missions COBE, WMAP, and now PLANCK, provides a unique probe of the very early stages of our Universe. The red-shift of atomic lines in distant galaxies, the dynamics of pulsars, the large scale structure of galaxies, and black holes are a few manifestations of the theory of General Relativity. Yet, today, we understand only 4% of the mass of our Universe, the rest being called dark energy and dark matter, both of unknown origin! A second family of space missions is currently emerging; rather than designing ever more re nedobservationalinstruments,physicistsandengineersseekalsotousethespaceenvironment to perform high-precision tests of the fundamental laws of physics. The technology required for such tests has become available only over the course of the last decades. Clocks of high accuracy are an example. They are based on advances in atomic and laser physics, such as cold atoms, enabling a new generation of highly sensitive quantum sensors for ground and space experiments. Two experiments in space have now tested Einstein's relativity theory: * Several decades ago, Gravity Probe A con rmed the accuracy of the gravitational red-shift ?5 according to general relativity to a level of 7x 10 [R. F. C. Vessot et al. , Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser, Phys. Rev. Lett. 45, 2081-2084 (1980)].
The articles in this book represent the major contributions at the NATO Advanced Research Workshop that was held from 6 to 9 July 1987 in the magnificent setting of Dyffryn House and Gardens, in St. Nicholas, just outside Cardiff, Wales. The idea for such a meeting arose in discussions that I had in 1985 and 1986 with many of the principal members of the various groups building prototype laser-interferometric gravitational wave detectors. It became clear that the proposals that these groups were planning to submit for large-scale detectors would have to address questions like the following: * What computing hardware might be required to sift through data corning in at rates of several gigabytes per day for gravitational wave events that might last only a second or less and occur as rarely as once a month? * What software would be required for this task, and how much effort would be required to write it? * Given that every group accepted that a worldwide network of detectors operating in co incidence with one another was required in order to provide both convincing evidence of detections of gravitational waves and sufficient information to determine the amplitude and direction of the waves that had been detected, what sort of problems would the necessary data exchanges raise? Yet most of the effort in these groups had, quite naturally, been concentrated on the detector systems.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
Robert - A Queer And Crooked Memoir For…
Robert Hamblin
Paperback
![]()
|