![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This book gives a comprehensive review of results for associated sequences and demimartingales developed so far, with special emphasis on demimartingales and related processes. Probabilistic properties of associated sequences, demimartingales and related processes are discussed in the first six chapters. Applications of some of these results to some problems in nonparametric statistical inference for such processes are investigated in the last three chapters.
This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.
Statistical inference carries great significance in model building from both the theoretical and the applications points of view. Its applications to engineering and economic systems, financial economics, and the biological and medical sciences have made statistical inference for stochastic processes a well-recognized and important branch of statistics and probability. The class of semimartingales includes a large class of stochastic processes, including diffusion type processes, point processes, and diffusion type processes with jumps, widely used for stochastic modeling. Until now, however, researchers have had no single reference that collected the research conducted on the asymptotic theory for semimartingales. Semimartingales and their Statistical Inference, fills this need by presenting a comprehensive discussion of the asymptotic theory of semimartingales at a level needed for researchers working in the area of statistical inference for stochastic processes. The author brings together into one volume the state-of-the-art in the inferential aspect for such processes. The topics discussed include: Asymptotic likelihood theory Quasi-likelihood Likelihood and efficiency Inference for counting processes Inference for semimartingale regression models The author addresses a number of stochastic modeling applications from engineering, economic systems, financial economics, and medical sciences. He also includes some of the new and challenging statistical and probabilistic problems facing today's active researchers working in the area of inference for stochastic processes.
Statistical inference carries great significance in model building from both the theoretical and the applications points of view. Its applications to engineering and economic systems, financial economics, and the biological and medical sciences have made statistical inference for stochastic processes a well-recognized and important branch of statistics and probability.
This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.
This book gives a comprehensive review of results for associated sequences and demimartingales developed so far, with special emphasis on demimartingales and related processes. Probabilistic properties of associated sequences, demimartingales and related processes are discussed in the first six chapters. Applications of some of these results to some problems in nonparametric statistical inference for such processes are investigated in the last three chapters.
Explanation of the basic concepts and methods of statistics requires a reasonably good mathematical background, at least at a first-year-level knowledge of calculus. Most of the statistical software explain how to conduct data analysis, but do not explain when to apply and when not to apply it. Keeping this in view, we try to explain the basic concepts of probability and statistics for students with an understanding of a first course in calculus at the undergraduate level. Designed as a textbook for undergraduate and first-year graduate students in statistics, bio-statistics, social sciences and business administration programs as well as undergraduates in engineering sciences and computer science programs, it provides a clear exposition of the theory of probability along with applications in statistics. The book contains a large number of solved examples and chapter-end exercises designed to reinforce the probability theory and emphasize statistical applications.
|
![]() ![]() You may like...
Spectroscopy of Complex Oxide Interfaces…
Claudia Cancellieri, Vladimir N. Strocov
Hardcover
R4,936
Discovery Miles 49 360
Myxomycetes - Biology, Systematics…
Carlos Rojas, Steven L. Stephenson
Paperback
Annual Report of the Commissioners of…
New York (State) Commissioners of Fi
Hardcover
R1,039
Discovery Miles 10 390
|