0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Hardware Annealing in Analog VLSI Neurocomputing (Hardcover, 1991 ed.): Bank W. Lee, Bing J. Sheu Hardware Annealing in Analog VLSI Neurocomputing (Hardcover, 1991 ed.)
Bank W. Lee, Bing J. Sheu
R2,935 Discovery Miles 29 350 Ships in 10 - 15 working days

Rapid advances in neural sciences and VLSI design technologies have provided an excellent means to boost the computational capability and efficiency of data and signal processing tasks by several orders of magnitude. With massively parallel processing capabilities, artificial neural networks can be used to solve many engineering and scientific problems. Due to the optimized data communication structure for artificial intelligence applications, a neurocomputer is considered as the most promising sixth-generation computing machine. Typical applica tions of artificial neural networks include associative memory, pattern classification, early vision processing, speech recognition, image data compression, and intelligent robot control. VLSI neural circuits play an important role in exploring and exploiting the rich properties of artificial neural networks by using pro grammable synapses and gain-adjustable neurons. Basic building blocks of the analog VLSI neural networks consist of operational amplifiers as electronic neurons and synthesized resistors as electronic synapses. The synapse weight information can be stored in the dynamically refreshed capacitors for medium-term storage or in the floating-gate of an EEPROM cell for long-term storage. The feedback path in the amplifier can continuously change the output neuron operation from the unity-gain configuration to a high-gain configuration. The adjustability of the vol tage gain in the output neurons allows the implementation of hardware annealing in analog VLSI neural chips to find optimal solutions very efficiently. Both supervised learning and unsupervised learning can be implemented by using the programmable neural chips."

Hardware Annealing in Analog VLSI Neurocomputing (Paperback, Softcover reprint of the original 1st ed. 1991): Bank W. Lee, Bing... Hardware Annealing in Analog VLSI Neurocomputing (Paperback, Softcover reprint of the original 1st ed. 1991)
Bank W. Lee, Bing J. Sheu
R2,778 Discovery Miles 27 780 Ships in 10 - 15 working days

Rapid advances in neural sciences and VLSI design technologies have provided an excellent means to boost the computational capability and efficiency of data and signal processing tasks by several orders of magnitude. With massively parallel processing capabilities, artificial neural networks can be used to solve many engineering and scientific problems. Due to the optimized data communication structure for artificial intelligence applications, a neurocomputer is considered as the most promising sixth-generation computing machine. Typical applica tions of artificial neural networks include associative memory, pattern classification, early vision processing, speech recognition, image data compression, and intelligent robot control. VLSI neural circuits play an important role in exploring and exploiting the rich properties of artificial neural networks by using pro grammable synapses and gain-adjustable neurons. Basic building blocks of the analog VLSI neural networks consist of operational amplifiers as electronic neurons and synthesized resistors as electronic synapses. The synapse weight information can be stored in the dynamically refreshed capacitors for medium-term storage or in the floating-gate of an EEPROM cell for long-term storage. The feedback path in the amplifier can continuously change the output neuron operation from the unity-gain configuration to a high-gain configuration. The adjustability of the vol tage gain in the output neurons allows the implementation of hardware annealing in analog VLSI neural chips to find optimal solutions very efficiently. Both supervised learning and unsupervised learning can be implemented by using the programmable neural chips."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Bennett Read Steam Iron (2200W)
R592 Discovery Miles 5 920
JBL Flip 6 Bluetooth Portable Speaker…
R2,899 R2,609 Discovery Miles 26 090
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180
Sterile Wound Dressing
R5 Discovery Miles 50
SPF30 Sun Block
R68 Discovery Miles 680
Loot
Nadine Gordimer Paperback  (2)
R383 R318 Discovery Miles 3 180
1 Litre Unicorn Waterbottle
R70 Discovery Miles 700
Knock At The Cabin
Dave Bautista, Jonathan Groff, … DVD R133 Discovery Miles 1 330
Puss In Boots 2 - The Last Wish
DVD R113 Discovery Miles 1 130
Munchkin Gentle Scoop Silicone Training…
R175 Discovery Miles 1 750

 

Partners