Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The mechanisms and physiological functions of urea transporters across biological membranes are subjects of long-standing interests. Although urea represents roughly 40% of all urinary solutes in normal human urine, the handling of urea in the tissues has been largely neglected in the past and few clinical or experimental studies now report data on urea. Most recent physiological text books include chapters on water and electrolyte physiology but no chapter on urea. Our aim in writing this book is to stimulate further research in new directions by providing novel and provocative insights into the further mechanisms and physiological significance of urea metabolism and transport in mammals. This book offers a state-of-the-art report on recent discoveries concerning urea transport and where the field is going. It mainly focuses on advances made over the past 20 years on the biophysics, genetics, protein structure, molecular biology, physiology, pathophysiology and pharmacology of urea transport in mammalian cell membranes. It will help graduate students and researchers to get an overall picture of mammalian urea transporters and may also yield benefits for pharmaceutical companies with regard to drug discovery based on the urea transporter. Baoxue Yang is a professor and vice chairman of the Department of Pharmacology, Peking University. He is also an adjunct professor of Jilin University and a visiting professor of Northeast Normal University. Prof. Yang has been researching urea transporters for nearly 20 years and has published more than 70 original research articles in this field.
This book provides a state-of-the-art report on our current understanding of aquaporins and the future direction of the field. Aquaporins (AQPs) are a group of water-channel proteins that are specifically permeable to water and other small molecules, such as glycerol and urea. To date thirteen water-channel proteins (AQP0 - AQP12) have been cloned and the mechanisms and physiological functions of water transport across biological membranes have long been the subject of interest. Recent advances in the molecular biology and physiology of water transport have yielded new insights into how and why water moves across cell membranes, and studies on aquaporin knockout mouse models suggest that aquaporins are involved in the development of some diseases and they may be useful targets of research into selective-inhibitor drugs. By focusing on the advances made over the last 30 years in the biophysics, genetics, protein structure, molecular biology, physiology, pathophysiology and pharmacology of aquaporins in mammalian cell membranes, this book provides novel insights into further mechanisms and the physiological significance of water and some small molecule transport in mammals in order to stimulate further research in new directions. In the second version, fourteen chapters will be updated base on the most recent research articles. Ten new chapters will be added.
This book presents a state-of-the-art report on recent advances concerning Ganoderma and where the field is going. Although some older work is also cited, the main focus is on advances made over the past 20 years in the pharmacology and clinical applications of Ganoderma. Ganoderma lucidum (Lingzhi) has been used as a traditional medicine in Asian countries to maintain health and to treat diseases for more than two thousand years. Recently, its value has been demonstrated in preventing and treating certain diseases, such as tumors, liver disorders, renal injury, hypercholesterolemia, obesity, cerebral ischemia reperfusion, bronchitis etc. In addition, laboratory and clinical studies have confirmed that the chemical components of Ganoderma, such as Ganoderma lucidum polysaccharide peptides and triterpenes isolated from the fruiting body of Ganoderma lucidum, produce diverse pharmacological effects. Ganoderma and its components play an important part in antioxidant stress, radical-scavenging, immunomodulation, and intracellular signaling regulation, and accordingly warrant further study. This book systematically reviews the latest advances in our understanding of pharmacology and clinical applications of Ganoderma, and offers researchers and graduate students valuable new insights into the pharmacology and clinical applications of Ganoderma and related products.
This book presents a state-of-the-art report on recent advances concerning Ganoderma and where the field is going. Although some older work is also cited, the main focus is on advances made over the past 20 years in the pharmacology and clinical applications of Ganoderma. Ganoderma lucidum (Lingzhi) has been used as a traditional medicine in Asian countries to maintain health and to treat diseases for more than two thousand years. Recently, its value has been demonstrated in preventing and treating certain diseases, such as tumors, liver disorders, renal injury, hypercholesterolemia, obesity, cerebral ischemia reperfusion, bronchitis etc. In addition, laboratory and clinical studies have confirmed that the chemical components of Ganoderma, such as Ganoderma lucidum polysaccharide peptides and triterpenes isolated from the fruiting body of Ganoderma lucidum, produce diverse pharmacological effects. Ganoderma and its components play an important part in antioxidant stress, radical-scavenging, immunomodulation, and intracellular signaling regulation, and accordingly warrant further study. This book systematically reviews the latest advances in our understanding of pharmacology and clinical applications of Ganoderma, and offers researchers and graduate students valuable new insights into the pharmacology and clinical applications of Ganoderma and related products.
The mechanisms and physiological functions of urea transporters across biological membranes are subjects of long-standing interests. Although urea represents roughly 40% of all urinary solutes in normal human urine, the handling of urea in the tissues has been largely neglected in the past and few clinical or experimental studies now report data on urea. Most recent physiological text books include chapters on water and electrolyte physiology but no chapter on urea. Our aim in writing this book is to stimulate further research in new directions by providing novel and provocative insights into the further mechanisms and physiological significance of urea metabolism and transport in mammals. This book offers a state-of-the-art report on recent discoveries concerning urea transport and where the field is going. It mainly focuses on advances made over the past 20 years on the biophysics, genetics, protein structure, molecular biology, physiology, pathophysiology and pharmacology of urea transport in mammalian cell membranes. It will help graduate students and researchers to get an overall picture of mammalian urea transporters and may also yield benefits for pharmaceutical companies with regard to drug discovery based on the urea transporter. Baoxue Yang is a professor and vice chairman of the Department of Pharmacology, Peking University. He is also an adjunct professor of Jilin University and a visiting professor of Northeast Normal University. Prof. Yang has been researching urea transporters for nearly 20 years and has published more than 70 original research articles in this field.
|
You may like...
Heart Of A Strong Woman - From Daveyton…
Xoliswa Nduneni-Ngema, Fred Khumalo
Paperback
|