Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
Mobile forensics has grown from a relatively obscure tradecraft to a crucial part of many criminal investigations, and is now used daily by examiners and analysts within local, state, and federal law enforcement as well as within the military, US government organizations, and the private "e-Discovery" industry. Developments in forensic research, tools, and processes over the past decade have been very successful and continue to change at a rapid pace. Forensic Investigations and Risk Management in Mobile and Wireless Communications is a collection of innovative research on the methods and applications of analyzing mobile devices and data for collection of information pertaining to the legal evidence related to various security breaches and intrusion detection. While highlighting topics including cybercrime, neural networks, and smartphone security, this book is ideally designed for security analysts, IT professionals, researchers, practitioners, academicians, and students currently investigating the up-and-coming aspects surrounding network security, computer science, and security engineering.
The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model. Authors pay attention to the four main findings of the book : -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features. - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis. - The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis. - Semantic relations among the words in the text have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.
This book addresses the Internet of Things (IoT), an essential topic in the technology industry, policy, and engineering circles, and one that has become headline news in both the specialty press and the popular media. The book focuses on energy efficiency concerns in IoT and the requirements related to Industry 4.0. It is the first-ever "how-to" guide on frequently overlooked practical, methodological, and moral questions in any nations' journey to reducing energy consumption in IoT devices. The book discusses several examples of energy-efficient IoT, ranging from simple devices like indoor temperature sensors, to more complex sensors (e.g. electrical power measuring devices), actuators (e.g. HVAC room controllers, motors) and devices (e.g. industrial circuit-breakers, PLC for home, building or industrial automation). It provides a detailed approach to conserving energy in IoT devices, and comparative case studies on performance evaluation metrics, state-of-the-art approaches, and IoT legislation.
This book covers computational statistics-based approaches for Artificial Intelligence. The aim of this book is to provide comprehensive coverage of the fundamentals through the applications of the different kinds of mathematical modelling and statistical techniques and describing their applications in different Artificial Intelligence systems. The primary users of this book will include researchers, academicians, postgraduate students, and specialists in the areas of data science, mathematical modelling, and Artificial Intelligence. It will also serve as a valuable resource for many others in the fields of electrical, computer, and optical engineering. The key features of this book are: Presents development of several real-world problem applications and experimental research in the field of computational statistics and mathematical modelling for Artificial Intelligence Examines the evolution of fundamental research into industrialized research and the transformation of applied investigation into real-time applications Examines the applications involving analytical and statistical solutions, and provides foundational and advanced concepts for beginners and industry professionals Provides a dynamic perspective to the concept of computational statistics for analysis of data and applications in intelligent systems with an objective of ensuring sustainability issues for ease of different stakeholders in various fields Integrates recent methodologies and challenges by employing mathematical modeling and statistical techniques for Artificial Intelligence
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
This book gathers selected research papers presented at the International Conference on Communication and Intelligent Systems (ICCIS 2019), organised by Swami Keshvanand Institute of Technology, Management & Gramothan (SKIT), Jaipur, India and Rajasthan Technical University, Kota, India on 9-10 November 2019. This book presents a collection of state-of-the-art research work involving cutting-edge technologies for communication and intelligent systems. Over the past few years, advances in artificial intelligence and machine learning have sparked new research efforts around the globe, which explore novel ways of developing intelligent systems and smart communication technologies. The book presents single- and multi-disciplinary research on these themes in order to make the latest results available in a single, readily accessible source.
This book constitutes the refereed proceedings of the Second International Conference on Emerging Technologies in Computer Engineering: Microservices in Big Data Analytics, ICETCE 2019, held in Jaipur, India, in February 2019. The 28 revised full papers along with 1 short paper presented were carefully reviewed and selected from 253 submissions. ICETCE conference aims to showcase advanced technologies, techniques, innovations and equipments in computer engineering. It provides a platform for researchers, scholars, experts, technicians, government officials and industry personnel from all over the world to discuss and share their valuable ideas and experiences.
The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model. Authors pay attention to the four main findings of the book : -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features. - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis. - The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis. - Semantic relations among the words in the text have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.
Predictive Modeling in Biomedical Data Mining and Analysis presents major technical advancements and research findings in the field of machine learning in biomedical image and data analysis. The book examines recent technologies and studies in preclinical and clinical practice in computational intelligence. The authors present leading-edge research in the science of processing, analyzing and utilizing all aspects of advanced computational machine learning in biomedical image and data analysis. As the application of machine learning is spreading to a variety of biomedical problems, including automatic image segmentation, image classification, disease classification, fundamental biological processes, and treatments, this is an ideal reference. Machine Learning techniques are used as predictive models for many types of applications, including biomedical applications. These techniques have shown impressive results across a variety of domains in biomedical engineering research. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood, hence the need for new resources and information.
This book presents innovative work by leading academics, researchers, and experts from industry which is useful for young researchers and students. This book includes selected papers from International Conference on Intelligent Cyber-Physical Systems (ICPS 2021), held at Indian Institute of Information Technology Kota (IIIT Kota), MNIT Jaipur Campus, Jaipur, India, during 16-18 April 2021. The book is a collection of the state-of-the art research work in the cutting-edge technologies related to the artificial intelligence and cyber physical systems.
This book constitutes the refereed proceedings of the 5th International Conference on Emerging Technologies in Computer Engineering, ICETCE 2021, held in Jaipur, India, in February 2022.The 40 revised full papers along with 20 short papers presented were carefully reviewed and selected from 235 submissions. The papers are organized according to the following topical headings: cognitive computing; Internet of Things (IoT); machine learning and applications; soft computing; data science and big data analytics; blockchain and cyber security.
Cyber-Physical Systems: AI and COVID-19 highlights original research which addresses current data challenges in terms of the development of mathematical models, cyber-physical systems-based tools and techniques, and the design and development of algorithmic solutions, etc. It reviews the technical concepts of gathering, processing and analyzing data from cyber-physical systems (CPS) and reviews tools and techniques that can be used. This book will act as a resource to guide COVID researchers as they move forward with clinical and epidemiological studies on this outbreak, including the technical concepts of gathering, processing and analyzing data from cyber-physical systems (CPS). The major problem in the identification of COVID-19 is detection and diagnosis due to non-availability of medicine. In this situation, only one method, Reverse Transcription Polymerase Chain Reaction (RT-PCR) has been widely adopted and used for diagnosis. With the evolution of COVID-19, the global research community has implemented many machine learning and deep learning-based approaches with incremental datasets. However, finding more accurate identification and prediction methods are crucial at this juncture.
This book addresses the Internet of Things (IoT), an essential topic in the technology industry, policy, and engineering circles, and one that has become headline news in both the specialty press and the popular media. The book focuses on energy efficiency concerns in IoT and the requirements related to Industry 4.0. It is the first-ever "how-to" guide on frequently overlooked practical, methodological, and moral questions in any nations' journey to reducing energy consumption in IoT devices. The book discusses several examples of energy-efficient IoT, ranging from simple devices like indoor temperature sensors, to more complex sensors (e.g. electrical power measuring devices), actuators (e.g. HVAC room controllers, motors) and devices (e.g. industrial circuit-breakers, PLC for home, building or industrial automation). It provides a detailed approach to conserving energy in IoT devices, and comparative case studies on performance evaluation metrics, state-of-the-art approaches, and IoT legislation.
This book presents innovative work by leading academics, researchers, and experts from industry which is useful for young researchers and students. This book includes selected papers from International Conference on Intelligent Cyber-Physical Systems (ICPS 2021), held at Indian Institute of Information Technology Kota (IIIT Kota), MNIT Jaipur Campus, Jaipur, India, during 16-18 April 2021. The book is a collection of the state-of-the art research work in the cutting-edge technologies related to the artificial intelligence and cyber physical systems.
Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing.
Understand how implementing different data structures and algorithms intelligently can make your Python code and applications more maintainable and efficient Key Features Explore functional and reactive implementations of traditional and advanced data structures Apply a diverse range of algorithms in your Python code Implement the skills you have learned to maximize the performance of your applications Book DescriptionChoosing the right data structure is pivotal to optimizing the performance and scalability of applications. This new edition of Hands-On Data Structures and Algorithms with Python will expand your understanding of key structures, including stacks, queues, and lists, and also show you how to apply priority queues and heaps in applications. You'll learn how to analyze and compare Python algorithms, and understand which algorithms should be used for a problem based on running time and computational complexity. You will also become confident organizing your code in a manageable, consistent, and scalable way, which will boost your productivity as a Python developer. By the end of this Python book, you'll be able to manipulate the most important data structures and algorithms to more efficiently store, organize, and access data in your applications. What you will learn Understand common data structures and algorithms using examples, diagrams, and exercises Explore how more complex structures, such as priority queues and heaps, can benefit your code Implement searching, sorting, and selection algorithms on number and string sequences Become confident with key string-matching algorithms Understand algorithmic paradigms and apply dynamic programming techniques Use asymptotic notation to analyze algorithm performance with regard to time and space complexities Write powerful, robust code using the latest features of Python Who this book is forThis book is for developers and programmers who are interested in learning about data structures and algorithms in Python to write complex, flexible programs. Basic Python programming knowledge is expected.
Mobile forensics has grown from a relatively obscure tradecraft to a crucial part of many criminal investigations, and is now used daily by examiners and analysts within local, state, and federal law enforcement as well as within the military, US government organizations, and the private ""e-Discovery"" industry. Developments in forensic research, tools, and processes over the past decade have been very successful and continue to change at a rapid pace. Forensic Investigations and Risk Management in Mobile and Wireless Communications is a collection of innovative research on the methods and applications of analyzing mobile devices and data for collection of information pertaining to the legal evidence related to various security breaches and intrusion detection. While highlighting topics including cybercrime, neural networks, and smartphone security, this book is ideally designed for security analysts, IT professionals, researchers, practitioners, academicians, and students currently investigating the up-and-coming aspects surrounding network security, computer science, and security engineering.
Learn to implement complex data structures and algorithms using Python Key Features Understand the analysis and design of fundamental Python data structures Explore advanced Python concepts such as Big O notation and dynamic programming Learn functional and reactive implementations of traditional data structures Book DescriptionData structures allow you to store and organize data efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. Hands-On Data Structures and Algorithms with Python teaches you the essential Python data structures and the most common algorithms for building easy and maintainable applications. This book helps you to understand the power of linked lists, double linked lists, and circular linked lists. You will learn to create complex data structures, such as graphs, stacks, and queues. As you make your way through the chapters, you will explore the application of binary searches and binary search trees, along with learning common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. In the concluding chapters, you will get to grips with organizing your code in a manageable, consistent, and extendable way. You will also study how to bubble sort, selection sort, insertion sort, and merge sort algorithms in detail. By the end of the book, you will have learned how to build components that are easy to understand, debug, and use in different applications. You will get insights into Python implementation of all the important and relevant algorithms. What you will learn Understand object representation, attribute binding, and data encapsulation Gain a solid understanding of Python data structures using algorithms Study algorithms using examples with pictorial representation Learn complex algorithms through easy explanation, implementing Python Build sophisticated and efficient data applications in Python Understand common programming algorithms used in Python data science Write efficient and robust code in Python 3.7 Who this book is forThis book is for developers who want to learn data structures and algorithms in Python to write complex and flexible programs. Basic Python programming knowledge is expected.
|
You may like...
|