|
Showing 1 - 3 of
3 matches in All Departments
Mark Alber, Bei Hu and Joachim Rosenthal . . . . . . . . . . . . .
. . . . . . . . . vii Part I Some Remarks on Applied Mathematics
Roger Brockett . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mathematics
is a Profession Christopher 1. Byrnes . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Comments on Applied Mathematics Avner Friedman . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 9 Towards an Applied Mathematics for Computer Science
Jeremy Gunawardena . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 11 Infomercial for Applied
Mathematics Darryl Holm . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 On
Research in Mathematical Economics M. Ali Khan . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 21 Applied Mathematics in the Computer and
Communications Industry Brian Marcus . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 25 'frends in Applied Mathematics Jerrold E. Marsden . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 28 Applied Mathematics as an Interdisciplinary
Subject Clyde F. Martin . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 vi
Contents Panel Discussion on Future Directions in Applied Mathe
matics Laurence R. Taylor . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 38 Part II
Feedback Stabilization of Relative Equilibria for Mechanical
Systems with Symmetry A. M. Bloch, J. E. Marsden and G. Sanchez . .
. . . . . . . . . . . . . . . . . . . . . 43 Oscillatory Descent
for Function Minimization R. Brockett . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 65 On the Well-Posedness of the Rational Covariance
Extension Problem C. l. Byrnes, H. J. Landau and A. Lindquist . . .
. . . . . . . . . . . . . . . . . . . 83 Singular Limits in Fluid
Mechanics P. Constantin . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Singularities and Defects in Patterns Far from Threshold N. M.
Ercolani . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 137 Mathematical
Modeling and Simulation for Applications of Fluid Flow in Porous
Media R. E. Ewing . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 On Loeb
Measure Spaces and their Significance for N on Cooperative Game
Theory M. A. Khan and Y. Sun . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 183 Mechanical Systems
with Symmetry, Variational Principles, and Integration Algorithms
J. E. Marsden and J. M. Wendlandt . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 219 Preface The applied sciences are
faced with increasingly complex problems which call for
sophisticated mathematical models."
Mark Alber, Bei Hu and Joachim Rosenthal . . . . . . . . . . . . .
. . . . . . . . . vii Part I Some Remarks on Applied Mathematics
Roger Brockett . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mathematics
is a Profession Christopher 1. Byrnes . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Comments on Applied Mathematics Avner Friedman . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 9 Towards an Applied Mathematics for Computer Science
Jeremy Gunawardena . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 11 Infomercial for Applied
Mathematics Darryl Holm . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 On
Research in Mathematical Economics M. Ali Khan . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 21 Applied Mathematics in the Computer and
Communications Industry Brian Marcus . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 25 'frends in Applied Mathematics Jerrold E. Marsden . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 28 Applied Mathematics as an Interdisciplinary
Subject Clyde F. Martin . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 31 vi
Contents Panel Discussion on Future Directions in Applied Mathe
matics Laurence R. Taylor . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 38 Part II
Feedback Stabilization of Relative Equilibria for Mechanical
Systems with Symmetry A. M. Bloch, J. E. Marsden and G. Sanchez . .
. . . . . . . . . . . . . . . . . . . . . 43 Oscillatory Descent
for Function Minimization R. Brockett . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 65 On the Well-Posedness of the Rational Covariance
Extension Problem C. l. Byrnes, H. J. Landau and A. Lindquist . . .
. . . . . . . . . . . . . . . . . . . 83 Singular Limits in Fluid
Mechanics P. Constantin . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Singularities and Defects in Patterns Far from Threshold N. M.
Ercolani . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 137 Mathematical
Modeling and Simulation for Applications of Fluid Flow in Porous
Media R. E. Ewing . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 On Loeb
Measure Spaces and their Significance for N on Cooperative Game
Theory M. A. Khan and Y. Sun . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 183 Mechanical Systems
with Symmetry, Variational Principles, and Integration Algorithms
J. E. Marsden and J. M. Wendlandt . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 219 Preface The applied sciences are
faced with increasingly complex problems which call for
sophisticated mathematical models."
There is an enormous amount of work in the literature about the
blow-up behavior of evolution equations. It is our intention to
introduce the theory by emphasizing the methods while seeking to
avoid massive technical computations. To reach this goal, we use
the simplest equation to illustrate the methods; these methods very
often apply to more general equations.
|
You may like...
The Wonder Of You
Elvis Presley, Royal Philharmonic Orchestra
CD
R48
Discovery Miles 480
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.