0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (3)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Determinantal Point Processes for Machine Learning (Paperback): Alex Kulesza, Ben Taskar Determinantal Point Processes for Machine Learning (Paperback)
Alex Kulesza, Ben Taskar
R2,223 Discovery Miles 22 230 Ships in 10 - 15 working days

Determinantal point processes (DPPs) are elegant probabilistic models of repulsion that arise in quantum physics and random matrix theory. In contrast to traditional structured models like Markov random fields, which become intractable and hard to approximate in the presence of negative correlations, DPPs offer efficient and exact algorithms for sampling, marginalization, conditioning, and other inference tasks. While they have been studied extensively by mathematicians, giving rise to a deep and beautiful theory, DPPs are relatively new in machine learning. Determinantal Point Processes for Machine Learning provides a comprehensible introduction to DPPs, focusing on the intuitions, algorithms, and extensions that are most relevant to the machine learning community, and shows how DPPs can be applied to real-world applications like finding diverse sets of high-quality search results, building informative summaries by selecting diverse sentences from documents, modeling non-overlapping human poses in images or video, and automatically building timelines of important news stories. It presents the general mathematical background to DPPs along with a range of modeling extensions, efficient algorithms, and theoretical results that aim to enable practical modeling and learning.

Predicting Structured Data (Paperback): Goekhan BakIr, Thomas Hofmann, Bernhard Schoelkopf, Alexander J. Smola, Ben Taskar, S V... Predicting Structured Data (Paperback)
Goekhan BakIr, Thomas Hofmann, Bernhard Schoelkopf, Alexander J. Smola, Ben Taskar, …
R1,401 Discovery Miles 14 010 Ships in 10 - 15 working days

State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure. Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field. Contributors Yasemin Altun, Goekhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daume III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Perez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Schoelkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston

Introduction to Statistical Relational Learning (Paperback): Lise Getoor, Ben Taskar Introduction to Statistical Relational Learning (Paperback)
Lise Getoor, Ben Taskar; Contributions by Daphne Koller, Nir Friedman, Lise Getoor, …
R1,710 Discovery Miles 17 100 Ships in 10 - 15 working days

Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications. Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data. The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction. By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Nintendo Joy-Con Neon Controller Pair…
 (1)
R1,899 R1,729 Discovery Miles 17 290
Beyoncé: Life Is But a Dream
Beyoncé Knowles Blu-ray disc R53 Discovery Miles 530
Bostik Glue Stick (40g)
R52 Discovery Miles 520
Gloria
Sam Smith CD R187 R177 Discovery Miles 1 770
JCB Warrior Steel Toe PVC Safety Boot…
R469 Discovery Miles 4 690
Tommee Tippee - Closer to Nature Soother…
R170 R158 Discovery Miles 1 580
Pulse Active 2-Piece Ankle/Wrist Weights…
R265 Discovery Miles 2 650
Molinard Molinard Ambre Eau De Parfum…
R1,839 Discovery Miles 18 390
Multi Colour Jungle Stripe Neckerchief
R119 Discovery Miles 1 190
Broken To Heal - Deceit, Destruction…
Alistair Izobell Paperback  (1)
R200 Discovery Miles 2 000

 

Partners