Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This volume provides a collection of contemporary perspectives on using activity-based protein profiling (ABPP) for biological discoveries in protein science, microbiology, and immunology. A common theme throughout is the special utility of ABPP to interrogate protein function and small-molecule interactions on a global scale in native biological systems. Each chapter showcases distinct advantages of ABPP applied to diverse protein classes and biological systems. As such, the book offers readers valuable insights into the basic principles of ABPP technology and how to apply this approach to biological questions ranging from the study of post-translational modifications to targeting bacterial effectors in host-pathogen interactions.
Human cells produce at least 30,000 different proteins. Each has a specific function characterized by a unique sequence and native conformation that allows it to perform that function. While research in this post-genomic era has created a deluge of invaluable information, the field has lacked for an authoritative introductory text needed to inform researchers and students in all of those fields now concerned with protein research. Introduction to Peptides and Proteins brings together some of the most respected researchers in protein science to present a remarkably coherent introduction to modern peptide and protein chemistry. The first sections of the book delve into - Basic peptide and protein science from assembly through degradation Traditional and emerging research methods including those used in bioinformatics and proteomics New computational approaches and algorithms used to find patterns in the vast data collected by sequencing projects After providing a foundation in tools and methods, the authors closely examine six protein families, including representative classes such as enzymes, cell-surface receptors, antibodies, fibrous proteins, and bioactive peptide classes. They concentrate on biochemical mechanisms and where possible indicate therapeutic or biotechnical possibilities. Then focusing on clinical aspects, the authors investigate misfolding as found in prion diseases, miscleavage as found in Alzheimer's, and mis-sequencing as found with some cancers. Drawing from some of their own research, the authors summarize recent achievements and emerging applications. They discuss the use of proteins and peptides as drugs and the solid-phase synthesis required for drug production. They also look at the use of peptides as functional biomolecules and research tools. No longer just th
Human cells produce at least 30,000 different proteins. Each has a specific function characterized by a unique sequence and native conformation that allows it to perform that function. While research in this post-genomic era has created a deluge of invaluable information, the field has lacked for an authoritative introductory text needed to inform researchers and students in all of those fields now concerned with protein research. Introduction to Peptides and Proteins brings together some of the most respected researchers in protein science to present a remarkably coherent introduction to modern peptide and protein chemistry. The first sections of the book delve into - Basic peptide and protein science from assembly through degradation Traditional and emerging research methods including those used in bioinformatics and proteomics New computational approaches and algorithms used to find patterns in the vast data collected by sequencing projects After providing a foundation in tools and methods, the authors closely examine six protein families, including representative classes such as enzymes, cell-surface receptors, antibodies, fibrous proteins, and bioactive peptide classes. They concentrate on biochemical mechanisms and where possible indicate therapeutic or biotechnical possibilities. Then focusing on clinical aspects, the authors investigate misfolding as found in prion diseases, miscleavage as found in Alzheimer's, and mis-sequencing as found with some cancers. Drawing from some of their own research, the authors summarize recent achievements and emerging applications. They discuss the use of proteins and peptides as drugs and the solid-phase synthesis required for drug production. They also look at the use of peptides as functional biomolecules and research tools. No longer just th
|
You may like...
|