Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book is an introduction to the theory of noncommutative algebra. The core of the book is suitable for a one-semester course for graduate students. The approach, which is more homological than ring-theoretic, clarifies the subject and its relation to other important areas of mathematics, including K-theory, homological algebra, and representation theory. The main part of the book begins with a brief review of background material; the first chapter covers the basics of semisimple modules and rings, including the Wedderburn structure theorem; chapter two discusses the Jacobson radical, giving several different views; chapter three develops the theory of central simple algebras, including proofs of the Skolem-Noether and Double Centralizer theorems, with two famous theorems of Wedderburn and Frobenius given as applications; and chapter four is an introduction to the Brauer group and its relation to cohomology. The remaining chapters introduce several special topics: the notion of primitive ring is developed along lines parallel to that of simple rings; the representation theory of finite groups is combined with the Wedderburn Structure Theorem to prove Burnside's Theorem; the global dimension of a ring is studied using Kaplansky's elementary point of view; and the Brauer group of a commutative ring is introduced. Problems throughout the book provide concrete examples, applications and amplifications of the text; a set of supplementary problems explores further topics and can serve as starting points for student projects.
About This Book This book is meant to be used by beginning graduate students. It covers basic material needed by any student of algebra, and is essential to those specializing in ring theory, homological algebra, representation theory and K-theory, among others. It will also be of interest to students of algebraic topology, functional analysis, differential geometry and number theory. Our approach is more homological than ring-theoretic, as this leads the to many important areas of mathematics. This ap student more quickly proach is also, we believe, cleaner and easier to understand. However, the more classical, ring-theoretic approach, as well as modern extensions, are also presented via several exercises and sections in Chapter Five. We have tried not to leave any gaps on the paths to proving the main theorem- at most we ask the reader to fill in details for some of the sideline results; indeed this can be a fruitful way of solidifying one's understanding."
The study of the mapping class group Mod("S") is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. "A Primer on Mapping Class Groups" begins by explaining the main group-theoretical properties of Mod("S"), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmuller space and its geometry, and uses the action of Mod("S") on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification."
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|