![]() |
![]() |
Your cart is empty |
||
Showing 1 - 12 of 12 matches in All Departments
The present monograph is the successor of Direct methods in the calculus of variations which was published in the Applied Mathematical Sciences series and is currently out of print. Although the core and the structure of the present book is similar to the old one, it is much more than a revised version. Fifteen years have passed since the publication of the Direct methods in the calculus of variations book and since the subject is a very active one, almost half of the book presently consists of new material. The perspective has also slightly changed, which is reflected in the change of the title. Indeed a new subject, quasiconvex analysis has now been developed. The present monograph, which is essentially a reference book on the subject of quasiconvex analysis, can be used, as was the earlier book for an advanced course on the calculus of variations.
Nonlinear partial differential equations has become one of the main tools of mod ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes. In recent years, several mathematicians have investigated nonlinear equations, particularly those of the second order, both linear and nonlinear and either in divergence or nondivergence form. Quasilinear and fully nonlinear differential equations are relevant classes of such equations and have been widely examined in the mathematical literature. In this work we present a new family of differential equations called "implicit partial differential equations," described in detail in the introduction (c.f. Chapter 1). It is a class of nonlinear equations that does not include the family of fully nonlinear elliptic pdes. We present a new functional analytic method based on the Baire category theorem for handling the existence of almost everywhere solutions of these implicit equations. The results have been obtained for the most part in recent years and have important applications to the calculus of variations, nonlin ear elasticity, problems of phase transitions and optimal design; some results have not been published elsewhere."
- Serves as an excellent introduction to the calculus of
variations
The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
An important question in geometry and analysis is to know when two "k"-forms "f "and g are equivalent through a change of variables. The problem is therefore to find a map " "so that it satisfies the pullback equation: " ""*"("g") = "f." In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases "k "= 2 and "k "= "n," but much less when 3 "k " "n"-1. The present monograph provides thefirst comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge-Morrey decomposition and to give several versions of the Poincare lemma. The core of the book discusses the case "k "= "n," and then the case 1 "k " "n"-1 with special attention on the case "k "= 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Holder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Holder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. "The Pullback Equation for Differential Forms "is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars."
This book follows an advanced course in analysis (vector analysis, complex analysis and Fourier analysis) for engineering students, but can also be useful, as a complement to a more theoretical course, to mathematics and physics students.The first three parts of the book represent the theoretical aspect and are independent of each other. The fourth part gives detailed solutions to all exercises that are proposed in the first three parts.ForewordForeword (71 KB)
Nonlinear partial differential equations has become one of the main tools of mod ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes. In recent years, several mathematicians have investigated nonlinear equations, particularly those of the second order, both linear and nonlinear and either in divergence or nondivergence form. Quasilinear and fully nonlinear differential equations are relevant classes of such equations and have been widely examined in the mathematical literature. In this work we present a new family of differential equations called "implicit partial differential equations," described in detail in the introduction (c.f. Chapter 1). It is a class of nonlinear equations that does not include the family of fully nonlinear elliptic pdes. We present a new functional analytic method based on the Baire category theorem for handling the existence of almost everywhere solutions of these implicit equations. The results have been obtained for the most part in recent years and have important applications to the calculus of variations, nonlin ear elasticity, problems of phase transitions and optimal design; some results have not been published elsewhere."
This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.
This volume provides the texts of lectures given by L. Ambrosio, L. Caffarelli, M. Crandall, L.C. Evans, N. Fusco at the Summer course held in Cetraro (Italy) in 2005. These are introductory reports on current research by world leaders in the fields of calculus of variations and partial differential equations. The topics discussed are transport equations for nonsmooth vector fields, homogenization, viscosity methods for the infinite Laplacian, weak KAM theory and geometrical aspects of symmetrization. A historical overview of all CIME courses on the calculus of variations and partial differential equations is contributed by Elvira Mascolo.
The calculus of variations is one of the oldest subjects in mathematics, and it is very much alive and still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, several new exercises have been added. The book, containing a total of 119 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
Collating different aspects of Vector-valued Partial Differential Equations and Applications, this volume is based on the 2013 CIME Course with the same name which took place at Cetraro, Italy, under the scientific direction of John Ball and Paolo Marcellini. It contains the following contributions: The pullback equation (Bernard Dacorogna), The stability of the isoperimetric inequality (Nicola Fusco), Mathematical problems in thin elastic sheets: scaling limits, packing, crumpling and singularities (Stefan Muller), and Aspects of PDEs related to fluid flows (Vladimir Sverak). These lectures are addressed to graduate students and researchers in the field.
The calculus of variations is one of the oldest subjects in mathematics, and it is very much alive and still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, several new exercises have been added. The book, containing a total of 119 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
|
![]() ![]() You may like...
|