0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

BioH2 & BioCH4 Through Anaerobic Digestion - From Research to Full-scale Applications (Paperback, Softcover reprint of the... BioH2 & BioCH4 Through Anaerobic Digestion - From Research to Full-scale Applications (Paperback, Softcover reprint of the original 1st ed. 2015)
Bernardo RUGGERI, Tonia Tommasi, Sara Sanfilippo
R3,645 Discovery Miles 36 450 Ships in 10 - 15 working days

This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane®), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.  

BioH2 & BioCH4 Through Anaerobic Digestion - From Research to Full-scale Applications (Hardcover, 2015 ed.): Bernardo RUGGERI,... BioH2 & BioCH4 Through Anaerobic Digestion - From Research to Full-scale Applications (Hardcover, 2015 ed.)
Bernardo RUGGERI, Tonia Tommasi, Sara Sanfilippo
R3,891 Discovery Miles 38 910 Ships in 10 - 15 working days

This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane (R)), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.

Control of Hydrates in Natural Gas during Transportation (Paperback): Ahmad Saeed, Bernardo RUGGERI, Naresh Shivani Control of Hydrates in Natural Gas during Transportation (Paperback)
Ahmad Saeed, Bernardo RUGGERI, Naresh Shivani
R1,434 Discovery Miles 14 340 Ships in 10 - 15 working days
Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Lifematrix MCT Powder (Unflavoured…
R271 Discovery Miles 2 710
Professor Snape Wizard Wand - In…
 (8)
R832 Discovery Miles 8 320
Seven Worlds, One Planet
David Attenborough DVD R66 Discovery Miles 660
Baby Dove Body Wash 400ml
R87 Discovery Miles 870
Microwave Egg Poacher (Yellow)
 (1)
R69 R63 Discovery Miles 630
JCB Chelsea Steel Toe Safety Boot (Tan…
R1,509 Discovery Miles 15 090
Snookums Baby Honey Dummies (6 Months)
R75 R63 Discovery Miles 630
1 Litre Unicorn Waterbottle
R70 Discovery Miles 700
SPF30 Sun Block
R68 Discovery Miles 680
Wildberry Bath Mat (Blue)
R89 R29 Discovery Miles 290

 

Partners