Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This is the first textbook on attribute exploration, its theory, its algorithms forapplications, and some of its many possible generalizations. Attribute explorationis useful for acquiring structured knowledge through an interactive process, byasking queries to an expert. Generalizations that handle incomplete, faulty, orimprecise data are discussed, but the focus lies on knowledge extraction from areliable information source.The method is based on Formal Concept Analysis, a mathematical theory ofconcepts and concept hierarchies, and uses its expressive diagrams. The presentationis self-contained. It provides an introduction to Formal Concept Analysiswith emphasis on its ability to derive algebraic structures from qualitative data,which can be represented in meaningful and precise graphics.
This is the first textbook on attribute exploration, its theory, its algorithms forapplications, and some of its many possible generalizations. Attribute explorationis useful for acquiring structured knowledge through an interactive process, byasking queries to an expert. Generalizations that handle incomplete, faulty, orimprecise data are discussed, but the focus lies on knowledge extraction from areliable information source.The method is based on Formal Concept Analysis, a mathematical theory ofconcepts and concept hierarchies, and uses its expressive diagrams. The presentationis self-contained. It provides an introduction to Formal Concept Analysiswith emphasis on its ability to derive algebraic structures from qualitative data,which can be represented in meaningful and precise graphics.
Formal concept analysis has been developed as a field of applied mathematics based on the mathematization of concept and concept hierarchy. It thereby allows us to mathematically represent, analyze, and construct conceptual structures. The formal concept analysis approach has been proven successful in a wide range of application fields. This book constitutes a comprehensive and systematic presentation of the state of the art of formal concept analysis and its applications. The first part of the book is devoted to foundational and methodological topics. The contributions in the second part demonstrate how formal concept analysis is successfully used outside of mathematics, in linguistics, text retrieval, association rule mining, data analysis, and economics. The third part presents applications in software engineering.
This volume contains the Proceedings of ICFCA 2005, the 3rd International Conference on Formal Concept Analysis. The ICFCA conference series aims to be the premier forum for the publication of advances in applied lattice and order theory, and in particular scienti?c advances related to formal concept analysis. Formal concept analysis is a ?eld of applied mathematics with its mat- matical root in order theory, in particular in the theory of complete lattices. Researchers had long been aware of the fact that these ?elds have many - tential applications. Formal concept analysis emerged in the 1980s from e?orts to restructure lattice theory to promote better communication between lattice theorists and potential users of lattice theory. The key theme was the mathe- tization of concept and conceptual hierarchy. Since then, the ?eld has developed into a growing research area in its own right with a thriving theoretical com- nity and an increasing number of applications in data and knowledge processing, including data visualization, information retrieval, machine learning, data an- ysis and knowledge management. ICFCA2005re?ectedbothpracticalbene?tsandprogressinthefoundational theory of formal concept analysis. Algorithmic aspects were discussed as well as e?orts to broaden the ?eld. All regular papers appearing in this volume were refereed by at least two, in most cases three independent reviewers. The ?nal decision to accept the papers was arbitrated by the Program Chairs based on the referee reports. It was the involvement of the Program Committee and the Editorial Board that ensured the scienti?c quality of these proceedings.
The book constitutes the refereed proceedings of the 11th International Conference on Conceptual Structures, ICCS 2003, held in Dresden, Germany in July 2003. The 23 revised full papers presented together with 5 invited papers were carefully reviewed and selected for presentation. The papers are organized in topical sections on the many facets of conceptual structures, logical and linguistic aspects, conceptual representation of time and space, deepening the formal theory and applications of conceptual structures.
Computerscientistscreatemodelsofaperceivedreality.ThroughAItechniques, these models aim at providing the basic support for emulating cognitive - havior such as reasoning and learning, which is one of the main goals of the AI research e?ort. Such computer models are formed through the interaction of various acquisition and inference mechanisms: perception, concept learning, conceptual clustering, hypothesis testing, probabilistic inference, etc., and are represented using di?erent paradigms tightly linked to the processes that use them. Among these paradigms let us cite: biological models (neural nets, genetic programming), logic-based models (?rst-order logic, modal logic, rule-based s- tems), virtual reality models (object systems, agent systems), probabilistic m- els(Bayesiannets, fuzzylogic), linguisticmodels(conceptualdependencygraphs, language-based representations), etc. OneofthestrengthsoftheConceptualGraph(CG)theoryisitsversatilityin terms of the representation paradigms under which it falls. It can be viewed and therefore used, under di?erent representation paradigms, which makes it a p- ular choice for a wealth of applications. Its full coupling with di?erent cognitive processes lead to the opening of the ?eld toward related research communities such as the Description Logic, Formal Concept Analysis, and Computational Linguistic communities. We now see more and more research results from one community enrich the other, laying the foundations of common philosophical grounds from which a successful synergy can emerg
This is the first textbook on formal concept analysis. It gives a systematic presentation of the mathematical foundations and their relations to applications in computer science, especially in data analysis and knowledge processing. Above all, it presents graphical methods for representing conceptual systems that have proved themselves in communicating knowledge. Theory and graphical representation are thus closely coupled together. The mathematical foundations are treated thoroughly and illuminated by means of numerous examples. Since computers are being used ever more widely for knowledge processing, formal methods for conceptual analysis are gaining in importance. This book makes the basic theory for such methods accessible in a compact form.
This book constitutes the refereed proceedings of the 11th International Conference on Formal Concept Analysis, ICFCA 2013, held in Dresden, Germany, in May 2013. The 15 regular papers presented in this volume were carefully reviewed and selected from 46 submissions. The papers present current research from a thriving theoretical community and a rapidly expanding range of applications in information and knowledge processing including data visualization and analysis (mining), knowledge management, as well as Web semantics, and software engineering. In addition the book contains a reprint of the first publication in english describing the seminal stem-base construction by Guigues and Duquenne; and a position paper pointing out potential future applications of FCA.
Die Ordnungstheorie ist ein faszinierendes Teilgebiet der Diskreten Mathematik, das praktischen Nutzen und abstrakte mathematische Theorie, anschauliche Uberlegungen und schwierige Forschungsprobleme auf manchmal verbluffende Art miteinander verbindet. Das Buch gibt eine motivierende Einfuhrung in Grundbegriffe und moderne Stromungen der mathematischen Theorie geordneter Mengen, wobei der Autor sich auf besonders interessante Themen konzentriert. Da die Ordnungstheorie einfach und anspruchsvoll zugleich ist, abstrakt und angewandt, anschaulich und unvorstellbar, ist sie gerade fur Studenten in der zweiten Halfte des Bachelorstudiums und zu Beginn des Masterstudiums bestens geeignet."
|
You may like...
|