Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The early 21st century marks a new era in space exploration. The National Aeronautics and Space Administration (NASA) of the United States, The European Space Agency (ESA), as well as space agencies of Japan, China, India, and other countries have sent their probes to the Moon, Mars, and other planets in the solar system. Planetary Remote Sensing and Mapping introduces original research and new developments in the areas of planetary remote sensing, photogrammetry, mapping, GIS, and planetary science resulting from the recent space exploration missions. Topics covered include: Reference systems of planetary bodies Planetary exploration missions and sensors Geometric information extraction from planetary remote sensing data Feature information extraction from planetary remote sensing data Planetary remote sensing data fusion Planetary data management and presentation Planetary Remote Sensing and Mapping will serve scientists and professionals working in the planetary remote sensing and mapping areas, as well as planetary probe designers, engineers, and planetary geologists and geophysicists. It also provides useful reading material for university teachers and students in the broader areas of remote sensing, photogrammetry, cartography, GIS, and geodesy.
The early 21st century marks a new era in space exploration. The National Aeronautics and Space Administration (NASA) of the United States, The European Space Agency (ESA), as well as space agencies of Japan, China, India, and other countries have sent their probes to the Moon, Mars, and other planets in the solar system. Planetary Remote Sensing and Mapping introduces original research and new developments in the areas of planetary remote sensing, photogrammetry, mapping, GIS, and planetary science resulting from the recent space exploration missions. Topics covered include: Reference systems of planetary bodies Planetary exploration missions and sensors Geometric information extraction from planetary remote sensing data Feature information extraction from planetary remote sensing data Planetary remote sensing data fusion Planetary data management and presentation Planetary Remote Sensing and Mapping will serve scientists and professionals working in the planetary remote sensing and mapping areas, as well as planetary probe designers, engineers, and planetary geologists and geophysicists. It also provides useful reading material for university teachers and students in the broader areas of remote sensing, photogrammetry, cartography, GIS, and geodesy.
Offers New Insight on Uncertainty Modelling Focused on major research relative to spatial information, Uncertainty Modelling and Quality Control for Spatial Data introduces methods for managing uncertainties-such as data of questionable quality-in geographic information science (GIS) applications. By using original research, current advancement, and emerging developments in the field, the authors compile various aspects of spatial data quality control. From multidimensional and multi-scale data integration to uncertainties in spatial data mining, this book launches into areas that are rarely addressed. Topics covered include: New developments of uncertainty modelling, quality control of spatial data, and related research issues in spatial analysis Spatial statistical solutions in spatial data quality Eliminating systematic error in the analytical results of GIS applications A data quality perspective for GIS function workflow design Data quality in multi-dimensional integration Research challenges on data quality in the integration and analysis of data from multiple sources A new approach for imprecision management in the qualitative data warehouse A multi-dimensional quality assessment of photogrammetric and LiDAR datasets based on a vector approach An analysis on the uncertainty of multi-scale representation for street-block settlement Uncertainty Modelling and Quality Control for Spatial Data serves university students, researchers and professionals in GIS, and investigates the uncertainty modelling and quality control in multi-dimensional data integration, multi-scale data representation, national or regional spatial data products, and new spatial data mining methods.
This book explores the incorporation of plasmonic nanostructures into organic solar cells, which offers an attractive light trapping and absorption approach to enhance power conversion efficiencies. The authors review the latest advances in the field and discuss the characterization of these hybrid devices using a combination of optical and electrical probes. Transient optical spectroscopies such as transient absorption and transient photoluminescence spectroscopy offer powerful tools for observing charge carrier dynamics in plasmonic organic solar cells. In conjunction with device electrical characterizations, they provide unambiguous proof of the effect of the plasmonic nanostructures on the solar cells' performance. However, there have been a number of controversies over the effects of such integration - where both enhanced and decreased performance have been reported. Importantly, the new insights into the photophysics and charge dynamics of plasmonic organic solar cells that these spectroscopy methods yield could be used to resolve these controversies and provide clear guidelines for device design and fabrication.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|