Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
In its original form, this widely acclaimed primer on the
fundamentals of quantized semiconductor structures was published as
an introductory chapter in Raymond Dingle's edited volume (24) of
Semiconductors and Semimetals. Having already been praised by
reviewers for its excellent coverage, this material is now
available in an updated and expanded "student edition." This work
promises to become a standard reference in the field. It covers the
basics of electronic states as well as the fundamentals of optical
interactions and quantum transport in two-dimensional quantized
systems. This revised student edition also includes entirely new
sections discussing applications and one-dimensional and
zero-dimensional systems.
This book contains the lectures delivered at the NATO Advanced Research Workshop on the "Intersubband Transistions in Quantum Wells" held in Cargese, France, between the t 9 h and the 14th of September 1991. The urge for this Workshop was justified by the impressive growth of work dealing with this subject during the last two or three years. Indeed, thanks to recent progresses of epitaxial growth techniques, such as Molecular Beam Epitaxy, it is now possible to realize semiconductor layers ( e.g. GaAs) with thicknesses controlled within one atomic layer, sandwiched between insulating layers (e.g. AlGaAs). When the semiconducting layer is very thin, i.e. less than 15 nm, the energy of the carriers corresponding to their motion perpendicular to these layers is quantized, forming subbands of allowed energies. Because of the low effective masses in these semiconducting materials, the oscillator strengths corresponding to intersubband transitions are extremely large and quantum optical effects become giant in the 5 - 20 ~ range: photoionization, optical nonlinearities, ... Moreover, a great theoretical surprise is that - thanks to the robustness of the effective mass theory - these quantum wells are a real life materialization of our old text book one-dimensional quantum well ideal. Complex physical phenomena may then be investigated on a simple model system.
Optoelectronics is a practical and self-contained graduate-level text on the subject. The authors include such topics as quantum mechanics of electron-photon interaction, quantization of the electro-magnetic field, semiconductor properties, quantum theory of heterostructures and nonlinear optics. They build on these concepts to describe the physics, properties and performances of light-emitting diodes, quantum well lasers, photodetectors, optical parametric oscillators and waveguides. The emphasis is on the unifying theoretical analogies of optoelectronics, such as equivalence of quantization in heterostructure wells and waveguide modes, entanglement of blackbody radiation and semiconductor statistics.
Optoelectronics is a practical and self-contained graduate-level text on the subject. The authors include such topics as quantum mechanics of electron-photon interaction, quantization of the electro-magnetic field, semiconductor properties, quantum theory of heterostructures and nonlinear optics. They build on these concepts to describe the physics, properties and performances of light-emitting diodes, quantum well lasers, photodetectors, optical parametric oscillators and waveguides. The emphasis is on the unifying theoretical analogies of optoelectronics, such as equivalence of quantization in heterostructure wells and waveguide modes, entanglement of blackbody radiation and semiconductor statistics.
|
You may like...
|