|
|
Showing 1 - 2 of
2 matches in All Departments
The concept of quantum computing is based on two fundamental
principles of quantum mechanics: superposition and entanglement.
Instead of using bits, qubits are used in quantum computing, which
is a key indicator in the high level of safety and security this
type of cryptography ensures. If interfered with or eavesdropped
in, qubits will delete or refuse to send, which keeps the
information safe. This is vital in the current era where sensitive
and important personal information can be digitally shared online.
In computer networks, a large amount of data is transferred
worldwide daily, including anything from military plans to a
country's sensitive information, and data breaches can be
disastrous. This is where quantum cryptography comes into play. By
not being dependent on computational power, it can easily replace
classical cryptography. Limitations and Future Applications of
Quantum Cryptography is a critical reference that provides
knowledge on the basics of IoT infrastructure using quantum
cryptography, the differences between classical and quantum
cryptography, and the future aspects and developments in this
field. The chapters cover themes that span from the usage of
quantum cryptography in healthcare, to forensics, and more. While
highlighting topics such as 5G networks, image processing,
algorithms, and quantum machine learning, this book is ideally
intended for security professionals, IoT developers, computer
scientists, practitioners, researchers, academicians, and students
interested in the most recent research on quantum computing.
The concept of quantum computing is based on two fundamental
principles of quantum mechanics: superposition and entanglement.
Instead of using bits, qubits are used in quantum computing, which
is a key indicator in the high level of safety and security this
type of cryptography ensures. If interfered with or eavesdropped
in, qubits will delete or refuse to send, which keeps the
information safe. This is vital in the current era where sensitive
and important personal information can be digitally shared online.
In computer networks, a large amount of data is transferred
worldwide daily, including anything from military plans to a
country's sensitive information, and data breaches can be
disastrous. This is where quantum cryptography comes into play. By
not being dependent on computational power, it can easily replace
classical cryptography. Limitations and Future Applications of
Quantum Cryptography is a critical reference that provides
knowledge on the basics of IoT infrastructure using quantum
cryptography, the differences between classical and quantum
cryptography, and the future aspects and developments in this
field. The chapters cover themes that span from the usage of
quantum cryptography in healthcare, to forensics, and more. While
highlighting topics such as 5G networks, image processing,
algorithms, and quantum machine learning, this book is ideally
intended for security professionals, IoT developers, computer
scientists, practitioners, researchers, academicians, and students
interested in the most recent research on quantum computing.
|
You may like...
Ol' Blue Eyes
Leonard Mustazza
Hardcover
R2,069
Discovery Miles 20 690
|