Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
The ease of use of the programs in the application to ever more complex cases of disease and pestilence. The lack of need on the part of the student or modelers of mathematics beyond algebra and the lack of need of any prior computer programming experience. The surprising insights that can be gained from initially simple systems models.
Dynamic Modeling for Business Management applies dynamic modeling to business management, using accessible modeling techniques that are demonstrated starting with fundamental processes and advancing to more complex business models. Discussions of modeling emphasize its practical use for decision making and implementing change for measurable results. Readers will learn about both manufacturing and service-oriented business processes using hands-on lessons. They will then be able to manipulate additional models to try out their knowledge and address issues specific to their own businesses and interests. All of the models used in the book along with demo versions of ithink and Berkeley Madonna software are included with the book on a CD-ROM. Some of the topics covered include workflow management, supply-chain management, and business strategy.
Many biologists and ecologists have developed models that find widespread use in theoretical investigations and in applications to organism behavior, disease control, population and metapopulation theory, ecosystem dynamics, and environmental management. This book captures and extends the process of model development by concentrating on the dynamic aspects of these processes and by providing the tools such that virtually anyone with basic knowledge in the Life Sciences can develop meaningful dynamic models. Examples of the systems modeled in the book range from models of cell development, the beating heart, the growth and spread of insects, spatial competition and extinction, to the spread and control of epidemics, including the conditions for the development of chaos. Key features: - easy-to-learn and easy-to-use software - examples from many subdisciplines of biology, covering models of cells, organisms, populations, and metapopulations - no prior computer or programming experience required Key benefits: - learn how to develop modeling skills and system thinking on your own rather than use models developed by others - be able to easily run models under alternative assumptions and investigate the implications of these assumptions for the dynamics of the biological system being modeled - develop skills to assess the dynamics of biological systems
This book explores the dynamic processes in economic systems, concentrating on the extraction and use of the natural resources required to meet economic needs. Sections cover methods for dynamic modeling in economics, microeconomic models of firms, modeling optimal use of both nonrenewable and renewable resources, and chaos in economic models. This book does not require a substantial background in mathematics or computer science.
Places are today subject to contrary tendencies. They lose some functions, which may scale up to fewer more centralized places, or down to numerous more dispersed places, and they gain other functions, which are scaling up and down from other places. This prompts premature prophecies of the abolition of space and the obsolescence of place. At the same time, a growing literature testifies to the persistence of place as an incorrigible aspect of human experience, identity, and morality. Place is a common ground for thought and action, a community of experienced particulars that avoids solipsism and universalism. It draws us into the philosophy of the ordinary, into familiarity as a form of knowledge, into the wisdom of proximity. Each of these essays offers a philosophy of place, and reminds us that such philosophies ultimately decide how we make, use, and understand places, whether as accidents, instruments, or fields of care.
The book uses STELLA software to develop simulation models, thus allowing readers to convert their understanding of a phenomenon to a computer model, and then run it to yield the inevitable dynamic consequences built into the structure. Part I provides an introduction to modeling dynamic systems, while Part II offers general modeling methods. Parts III through VIII then apply these methods to model real-world phenomena from chemistry, genetics, ecology, economics, and engineering. Dynamic Modeling includes STELLA run-time software for both Windows and Mac systems, as well as computer files of sample models used in the book. A clear, approachable introduction to the modeling process, of interest in any field where real problems can be illuminated by computer simulation.
The ease of use of the programs in the application to ever more complex cases of disease and pestilence. The lack of need on the part of the student or modelers of mathematics beyond algebra and the lack of need of any prior computer programming experience. The surprising insights that can be gained from initially simple systems models.
Modelling is a tool used by savvy business managers to understand the processes of their business and to estimate the impact of changes. Dynamic Modelling for Business Management applies dynamic modelling to business management, using accessible modelling techniques that are demonstrated starting with fundamental processes and advancing to more complex business models. Discussions of modelling emphasize its practical use for decision making and implementing change for measurable results. Readers will learn about both manufacturing and service-oriented business processes using hands-on lessons. Then will then be able to manipulate additional models to try out their knowledge and address issues specific to their own businesses and interests. Some of the topics covered include workflow management, supply-chain-management, and strategy.
The book uses STELLA software to develop simulation models, thus allowing readers to convert their understanding of a phenomenon to a computer model, and then run it to yield the inevitable dynamic consequences built into the structure. Part I provides an introduction to modeling dynamic systems, while Part II offers general modeling methods. Parts III through VIII then apply these methods to model real-world phenomena from chemistry, genetics, ecology, economics, and engineering. A clear, approachable introduction to the modeling process, of interest in any field where real problems can be illuminated by computer simulation.
Models help us understand the dynamics of real-world processes by using the computer to mimic the actual forces that are known or assumed to result in a system's behavior. This book does not require a substantial background in mathematics or computer science.
This book explores the dynamic processes in economic systems, concentrating on the extraction and use of the natural resources required to meet economic needs. Sections cover methods for dynamic modeling in economics, microeconomic models of firms, modeling optimal use of both nonrenewable and renewable resources, and chaos in economic models. This book does not require a substantial background in mathematics or computer science.
Dynamic Modeling introduces an approach to modeling that makes it a more practical, intuitive endeavour. The book enables readers to convert their understanding of a phenomenon to a computer model, and then to run the model and let it yield the inevitable dynamic consequences built into the structure of the model. Part I provides an introduction to modeling dynamic systems, while Part II offers general methods for modeling. Parts III through to VIII then apply these methods to model real-world phenomena from chemistry, genetics, ecology, economics, and engineering. To develop and execute dynamic simulation models, Dynamic Modeling comes with STELLA II run- time software for Windows-based computers, as well as computer files of sample models used in the book. A clear, approachable introduction to the modeling process, of interest in any field where real problems can be illuminated by computer simulation.
|
You may like...
|