Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The application of computational electromagnetics to real-world EMI/EMC engineering is an emerging technology. With the advancement in electronics, EMI/EMC issues have greatly increased in complexity. As a result, it is no longer possible to rely exclusively on traditional techniques and expect cost-effective solutions. The first edition of this book introduced computational electromagnetics to EMI/EMC engineering. This second edition continues the introduction of computational electromagnetics to EMI/EMC engineering, but also adds new modeling techniques, namely the Partial Element Equivalent Circuit method and the Transmission Line Matrix method, and updates to the science of EMI/EMC modeling that have occurred since the first edition was published. This book combines the essential elements of electromagnetic theory, computational techniques, and EMI/EMC engineering as they apply to computational modeling for EMI/EMC applications. It is intended to provide an understanding for those interested in incorporating modeling techniques in their work. A variety of modeling techniques are needed for anyone interested in using computational modeling in the real world. This book includes an introduction of all the popular modeling techniques, such as the Finite-Difference Time-Domain method, the Method of Moments, the Finite Element Method, the Partial Element Equivalent Circuit method and the Transmission Line Matrix method. EMI/EMC Computational Modeling Handbook, Second Edition will serve many different levels of readers. It will serve as a basic introduction to modeling as applied to EMI/EMC problems for the engineer interested in getting started, and it will help the person already using modeling as a tool to become more effective in using different modeling techniques. It will also be useful for the engineer who is familiar with computational techniques and wishes to apply them to EMI/EMC applications. This book can also be used as a text to help students of electromagnetic theory and application better understand real-world challenges facing engineers.
Proper design of printed circuit boards can make the difference between a product passing emissions requirements during the first cycle or not. Traditional EMC design practices have been simply rule-based, that is, a list of rules-of-thumb are presented to the board designers to implement. When a particular rule-of-thumb is difficult to implement, it is often ignored. After the product is built, it will often fail emission requirements and various time consuming and costly add-ons are then required. Proper EMC design does not require advanced degrees from universities, nor does it require strenuous mathematics. It does require a basic understanding of the underlying principles of the potential causes of EMC emissions. With this basic understanding, circuit board designers can make trade-off decisions during the design phase to ensure optimum EMC design. Consideration of these potential sources will allow the design to pass the emissions requirements the first time in the test laboratory. A number of other books have been published on EMC. Most are general books on EMC and do not focus on printed circuit board is intended to help EMC engineers and design design. This book engineers understand the potential sources of emissions and how to reduce, control, or eliminate these sources. This book is intended to be a 'hands-on' book, that is, designers should be able to apply the concepts in this book directly to their designs in the real-world.
The application of computational electromagnetics to practical EMI/EMC engineering is an emerging technology. Because of the increased complexity in EMI/EMC issues resulting from advancements in electronics and telecommunications, it is no longer possible to rely exclusively on traditional techniques and tools to solve the growing list of electronic engineering design problems. EMI/EMC Computational Modeling Handbook introduces modeling and simulation of electromagnetics to real-world EMI/EMC engineering. It combines the essentials of electromagnetics, computational techniques, and actual EMI/EMC applications. Included are such popular full-wave computational modeling techniques as the Method of Moments, Finite-Difference Time Domain Technique, Finite Element Method, and several others. The authors have included a myriad of applications for computers, telecommunications, consumer electronics, medical electronics, and military uses. EMI/EMC Computational Modeling Handbook is an invaluable reference work for practicing EMI/EMC engineers, electronic design engineers, and any engineer involved in computational electromagnetics.
The application of computational electromagnetics to real-world EMI/EMC engineering is an emerging technology. With the advancement in electronics, EMI/EMC issues have greatly increased in complexity. As a result, it is no longer possible to rely exclusively on traditional techniques and expect cost-effective solutions. The first edition of this book introduced computational electromagnetics to EMI/EMC engineering. This second edition continues the introduction of computational electromagnetics to EMI/EMC engineering, but also adds new modeling techniques, namely the Partial Element Equivalent Circuit method and the Transmission Line Matrix method, and updates to the science of EMI/EMC modeling that have occurred since the first edition was published. This book combines the essential elements of electromagnetic theory, computational techniques, and EMI/EMC engineering as they apply to computational modeling for EMI/EMC applications. It is intended to provide an understanding for those interested in incorporating modeling techniques in their work. A variety of modeling techniques are needed for anyone interested in using computational modeling in the real world. This book includes an introduction of all the popular modeling techniques, such as the Finite-Difference Time-Domain method, the Method of Moments, the Finite Element Method, the Partial Element Equivalent Circuit method and the Transmission Line Matrix method. EMI/EMC Computational Modeling Handbook, Second Edition will serve many different levels of readers. It will serve as a basic introduction to modeling as applied to EMI/EMC problems for the engineer interested in getting started, and it will help the person already using modeling as a tool to become more effective in using different modeling techniques. It will also be useful for the engineer who is familiar with computational techniques and wishes to apply them to EMI/EMC applications. This book can also be used as a text to help students of electromagnetic theory and application better understand real-world challenges facing engineers.
|
You may like...
|