![]() |
![]() |
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic
properties are described, including estimation in geostatistics,
autocorrelation and second-order statistics, maximum likelihood
methods, approximate inference using the pseudo-likelihood or
Monte-Carlo simulations, statistics for point processes and
Bayesian hierarchical models. A chapter is devoted to Markov Chain
Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings
algorithms and exact simulation). This book is the English translation of Modelisation et Statistique Spatiales published by Springer in the series Mathematiques & Applications, a series established by Societe de Mathematiques Appliquees et Industrielles (SMAI)."
Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic
properties are described, including estimation in geostatistics,
autocorrelation and second-order statistics, maximum likelihood
methods, approximate inference using the pseudo-likelihood or
Monte-Carlo simulations, statistics for point processes and
Bayesian hierarchical models. A chapter is devoted to Markov Chain
Monte Carlo simulation (Gibbs sampler, Metropolis-Hastings
algorithms and exact simulation). This book is the English translation of Modelisation et Statistique Spatiales published by Springer in the series Mathematiques & Applications, a series established by Societe de Mathematiques Appliquees et Industrielles (SMAI)."
La statistique spatiale connaA(R)t un dA(c)veloppement important du fait de son utilisation dans de nombreux domaines: sciences de la terre, environnement et climatologie, A(c)pidA(c)miologie, A(c)conomA(c)trie, analyse da (TM)image, etca ] Ce livre prA(c)sente les principaux modA]les spatiaux utilisA(c)s ainsi que leur statistique pour les trois types de donnA(c)es: gA(c)ostatistiques (observation sur un domaine continu), donnA(c)es sur rA(c)seau discret, donnA(c)es ponctuelles. La (TM)objectif est prA(c)senter de faAon concise mais mathA(c)matiquement complA]te les modA]les les plus classiques (second ordre et variogramme; modA]le latticiel et champ de Gibbs-Markov; processus ponctuels) ainsi que leur simulation par algorithme MCMC. Vient ensuite la prA(c)sentation des outils statistiques utiles A leur A(c)tude. De nombreux exemples utilisant R illustrent les sujets abordA(c)s. Chaque chapitre est complA(c)tA(c) par des exercices et une annexe prA(c)sente briA]vement les outils probabilistes et statistiques utiles A la statistique de champs alA(c)atoires. In recent years spatial statistics has been widely applied in diverse areas such as climatology, ecology, economy, epidemiology, image analysis, etc. This volume illustrates the main spatial models and the current statistical methods for point-referenced, areal data and point pattern data with an emphasis on recent simulation techniques such as MCMC algorithms. The presentation is concise but mathematically rigorous and the proposed methods are illustrated using real data and the software R. Some exercises complete each chapter. The volume is accessible for senior undergraduate students, Ph.D. students in statistics, andexperienced statisticians. Moreover researchers in the above mentioned areas will find it useful as a mathematically sound reference.
|
![]() ![]() You may like...
|