![]() |
![]() |
Your cart is empty |
||
Showing 1 - 14 of 14 matches in All Departments
The main aim of this volume has been to gather together a selection of recent papers providing new ideas and solutions for a wide spectrum of Knowledge-Driven Computing approaches. More precisely, the ultimate goal has been to collect new knowledge representation, processing and computing paradigms which could be useful to practitioners involved in the area of discussion. To this end, contributions covering both theoretical aspects and practical solutions were preferred.
Combinatorial optimisation is a ubiquitous discipline whose usefulness spans vast applications domains. The intrinsic complexity of most combinatorial optimisation problems makes classical methods unaffordable in many cases. To acquire practical solutions to these problems requires the use of metaheuristic approaches that trade completeness for pragmatic effectiveness. Such approaches are able to provide optimal or quasi-optimal solutions to a plethora of difficult combinatorial optimisation problems. The application of metaheuristics to combinatorial optimisation is an active field in which new theoretical developments, new algorithmic models, and new application areas are continuously emerging. This volume presents recent advances in the area of metaheuristic combinatorial optimisation, with a special focus on evolutionary computation methods. Moreover, it addresses local search methods and hybrid approaches. In this sense, the book includes cutting-edge theoretical, methodological, algorithmic and applied developments in the field, from respected experts and with a sound perspective.
Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems. The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes. "Handbook of Memetic Algorithms" organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now. A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem, memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, a great attention has been given by the editors to make it a compact and smooth work which covers all the main areas of computational intelligence optimization. It is not only a necessary read for researchers working in the research area, but also a useful handbook for practitioners and engineers who need to address real-world optimization problems. In addition, the book structure makes it an interesting work also for graduate students and researchers is related fields of mathematics and computer science.
Evolutionary Computation (EC) techniques are e?cient, nature-inspired me- ods based on the principles of natural evolution and genetics. Due to their - ciency and simple underlying principles, these methods can be used for a diverse rangeofactivitiesincludingproblemsolving,optimization,machinelearningand pattern recognition. A large and continuously increasing number of researchers and professionals make use of EC techniques in various application domains. This volume presents a careful selection of relevant EC examples combined with a thorough examination of the techniques used in EC. The papers in the volume illustrate the current state of the art in the application of EC and should help and inspire researchers and professionals to develop e?cient EC methods for design and problem solving. All papers in this book were presented during EvoApplications 2010, which included a range of events on application-oriented aspects of EC. Since 1998, EvoApplications - formerly known as EvoWorkshops- has provided a unique opportunity for EC researchers to meet and discuss application aspects of EC and has been an important link between EC research and its application in a variety of domains. During these 12 years, new events have arisen, some have disappeared,whileothershavematuredtobecomeconferencesoftheirown,such as EuroGP in 2000, EvoCOP in 2004, and EvoBIO in 2007. And from this year, EvoApplications has become a conference as well.
The main aim of this volume has been to gather together a selection of recent papers providing new ideas and solutions for a wide spectrum of Knowledge-Driven Computing approaches. More precisely, the ultimate goal has been to collect new knowledge representation, processing and computing paradigms which could be useful to practitioners involved in the area of discussion. To this end, contributions covering both theoretical aspects and practical solutions were preferred.
Combinatorial optimisation is a ubiquitous discipline whose usefulness spans vast applications domains. The intrinsic complexity of most combinatorial optimisation problems makes classical methods unaffordable in many cases. To acquire practical solutions to these problems requires the use of metaheuristic approaches that trade completeness for pragmatic effectiveness. Such approaches are able to provide optimal or quasi-optimal solutions to a plethora of difficult combinatorial optimisation problems. The application of metaheuristics to combinatorial optimisation is an active field in which new theoretical developments, new algorithmic models, and new application areas are continuously emerging. This volume presents recent advances in the area of metaheuristic combinatorial optimisation, with a special focus on evolutionary computation methods. Moreover, it addresses local search methods and hybrid approaches. In this sense, the book includes cutting-edge theoretical, methodological, algorithmic and applied developments in the field, from respected experts and with a sound perspective.
One of the keystones in practical metaheuristic problem-solving is the fact that tuning the optimization technique to the problem under consideration is crucial for achieving top performance. This tuning/customization is usually in the hands of the algorithm designer, and despite some methodological attempts, it largely remains a scientific art. Transferring a part of this customization effort to the algorithm itself -endowing it with smart mechanisms to self-adapt to the problem- has been a long pursued goal in the field of metaheuristics. These mechanisms can involve different aspects of the algorithm, such as for example, self-adjusting the parameters, self-adapting the functioning of internal components, evolving search strategies, etc. Recently, the idea of hyperheuristics, i.e., using a metaheuristic layer for adapting the search by selectively using different low-level heuristics, has also been gaining popularity. This volume presents recent advances in the area of adaptativeness in metaheuristic optimization, including up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms, as well as cutting edge works on adaptive, self-adaptive and multilevel metaheuristics, with application to both combinatorial and continuous optimization.
Metaheuristics have been shown to be e?ective for di?cult combinatorial op- mization problems appearing in a wide variety of industrial, economic, and sci- ti?c domains. Prominent examples of metaheuristics are evolutionary algorithms, tabu search, simulated annealing, scatter search, memetic algorithms, variable neighborhood search, iterated local search, greedy randomized adaptive search procedures, ant colony optimization, and estimation of distribution algorithms. Problems solved successfully include scheduling, timetabling, network design, transportation and distribution, vehicle routing, the travelling salesman problem, packing and cutting, satis?ability, and general mixed integer programming. EvoCOP began in 2001 and has been held annually since then. It is the ?rst event speci?cally dedicated to the application of evolutionary computation and related methods to combinatorial optimization problems. Originally held as a workshop, EvoCOP became a conference in 2004. The events gave researchers an excellent opportunity to present their latest research and to discuss current - velopments and applications. Following the general trend of hybrid metaheur- tics and diminishing boundaries between the di?erent classes of metaheuristics, EvoCOP has broadened its scope in recent years and invited submissions on any kind of metaheuristic for combinatorial optimization.
This book constitutes the refereed proceedings of the 5th International Workshop on Hybrid Metaheuristics, HM 2008, held in Malaga, Spain, in October 2008. The 14 revised full papers presented were carefully reviewed and selected from 33 submissions. The papers discuss specific aspects of combinations of metaheuristics and other solving techniques for tackling particular relevant constrained optimization problems, such as fiber optic networks, time tabling and freight train scheduling problems.
Metaheuristics have been shown to be e?ective for di?cult combinatorial - timization problems appearing in various industrial, economical, and scienti?c domains. Prominent examples of metaheuristics are evolutionary algorithms, tabu search, simulated annealing, scatter search, memetic algorithms, variable neighborhood search, iterated local search, greedy randomized adaptive search procedures, ant colony optimization and estimation of distribution algorithms. Problems solved successfully include scheduling, timetabling, network design, transportation and distribution, vehicle routing, the travelling salesman pr- lem, packing and cutting, satis?ability and general mixed integer programming. EvoCOPbeganin2001andhasbeenheldannuallysincethen.Itwasthe?rst event speci?cally dedicated to the application of evolutionary computation and related methods to combinatorial optimization problems. Originally held as a workshop, EvoCOPbecameaconferencein2004.Theeventsgaveresearchersan excellent opportunity to present their latest research and to discuss current - velopments and applications. Following the general trend of hybrid metaheur- tics and diminishing boundaries between the di?erent classes of metaheuristics, EvoCOP has broadened its scope over the last years and invited submissions on any kind of metaheuristic for combinatorial optimization
This book constitutes the refereed proceedings of the 7th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2007, held in Valencia, Spain in April 2007. The 21 revised full papers cover evolutionary algorithms as well as various other metaheuristics, like scatter search, tabu search, memetic algorithms, variable neighborhood search, ant colony optimization, and particle swarm optimization algorithms.
This book presents the refereed joint proceedings of seven workshops on evolutionary computing, EvoWorkshops 2006, held in Budapest in April 2006. 65 revised full papers and 13 revised short papers presented were carefully reviewed and selected from a total of 149 submissions. The book is organized in topical sections including evolutionary bioinformatics, evolutionary computation in communications, networks, and connected systems, and more.
This book constitutes the refereed proceedings of the 19th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2020, which was cancelled due to the COVID-19 pandemic, amalgamated with CAEPIA 2021, and held in Malaga, Spain, during September 2021. The 25 full papers presented were carefully selected from 40 submissions. The Conference of the Spanish Association of Artificial Intelligence (CAEPIA) is a biennial forum open to researchers from all over the world to present and discuss their latest scientific and technological advances in Antificial Intelligence (AI). The book is subdivided into the following topical headings: machine learning, optimization and search, and real-world applications. It covers such themes as ambient intelligence and smart environments; computer vision and robotics; constraints, search and planning; creativity and A.I.; education and A.I.; explainable and responsible A.I.; foundation, models and applications of A.I, and others.
Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems. The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes. "Handbook of Memetic Algorithms" organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now. A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem, memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, a great attention has been given by the editors to make it a compact and smooth work which covers all the main areas of computational intelligence optimization. It is not only a necessary read for researchers working in the research area, but also a useful handbook for practitioners and engineers who need to address real-world optimization problems. In addition, the book structure makes it an interesting work also for graduate students and researchers is related fields of mathematics and computer science.
|
![]() ![]() You may like...
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|