![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This volume of the Selected Papers is a product of the XIX Congress of the Portuguese Statistical Society, held at the Portuguese town of Nazare, from September 28 to October 1, 2011. All contributions were selected after a thorough peer-review process. It covers a broad scope of papers in the areas of Statistical Science, Probability and Stochastic Processes, Extremes and Statistical Applications."
Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.
This volume of the Selected Papers is a product of the XIX Congress of the Portuguese Statistical Society, held at the Portuguese town of Nazaré, from September 28 to October 1, 2011. All contributions were selected after a thorough peer-review process. It covers a broad scope of papers in the areas of Statistical Science, Probability and Stochastic Processes, Extremes and Statistical Applications.
Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.
|
![]() ![]() You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
![]()
|